2,533 research outputs found
Effect of the Intrinsic Width on the Piezoelectric Force Microscopy of a Single Ferroelectric Domain Wall
Intrinsic domain wall width is a fundamental parameter that reflects bulk
ferroelectric properties and governs the performance of ferroelectric memory
devices. We present closed-form analytical expressions for vertical and lateral
piezoelectric force microscopy (PFM) profiles for the conical and disc models
of the tip, beyond point charge and sphere approximations. The analysis takes
into account the finite intrinsic width of the domain wall, and dielectric
anisotropy of the material. These analytical expressions provide insight into
the mechanisms of PFM image formation and can be used for quantitative analysis
of the PFM domain wall profiles. PFM profile of a realistic domain wall is
shown to be the convolution of its intrinsic profile and resolution function of
PFM.Comment: 25 pages, 5 figures, 3 tables, 3 Appendices, To be submitted to J.
Appl. Phy
Relativistic spin precession in the binary PSR J11416545
PSR J11416545 is a precessing binary pulsar that has the rare potential to
reveal the two-dimensional structure of a non-recycled pulsar emission cone. It
has undergone of relativistic spin precession in the
years since its discovery. In this paper, we present a detailed Bayesian
analysis of the precessional evolution of the width of the total intensity
profile, to understand the changes to the line-of-sight impact angle ()
of the pulsar using four different physically motivated prior distribution
models. Although we cannot statistically differentiate between the models with
confidence, the temporal evolution of the linear and circular polarisations
strongly argue that our line-of-sight crossed the magnetic pole around MJD
54000 and that only two models remain viable. For both these models, it appears
likely that the pulsar will precess out of our line-of-sight in the next
years, assuming a simple beam geometry. Marginalising over suggests
that the pulsar is a near-orthogonal rotator and provides the first
polarization-independent estimate of the scale factor () that
relates the pulsar beam opening angle () to its rotational period ()
as : we find it to be at 1.4
GHz with 99\% confidence. If all pulsars emit from opposite poles of a dipolar
magnetic field with comparable brightness, we might expect to see evidence of
an interpulse arising in PSR J11416545, unless the emission is patchy.Comment: Accepted for publication in Astrophysical Journal Letter
Ghost Imaging without Discord
Ragy and Adesso argue that quantum discord is involved in the formation of a pseudothermal ghost image. We show that quantum discord plays no role in spatial light modulator ghost imaging, i.e., ghost-image formation based on structured illumination realized with laser light that has undergone spatial light modulation by the output from a pseudorandom number generator. Our analysis thus casts doubt on the degree to which quantum discord is necessary for ghost imaging.United States. Defense Advanced Research Projects Agency (Army Research Office Award W911NF-10-1-0404
Universal emergence of spatially-modulated structures induced by flexo-antiferrodistortive coupling in multiferroics
We proved the existence of a universal flexo-antiferrodistortive coupling as
a necessary complement to the well-known flexoelectric coupling. The coupling
is universal for all antiferrodistortive systems and can lead to the formation
of incommensurate, spatially-modulated phases in multiferroics. Our analysis
can provide a self-consistent mesoscopic explanation for a broad range of
modulated domain structures observed experimentally in multiferroics.Comment: 38 pages, 3 figures, 4 tables, 6 appendice
Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors
Using Landau-Ginzburg-Devonshire theory we calculated numerically the static
conductivity of both inclined and counter domain walls in the uniaxial
ferroelectrics-semiconductors of n-type. We used the effective mass
approximation for the electron and holes density of states, which is valid at
arbitrary distance from the domain wall. Due to the electrons accumulation, the
static conductivity drastically increases at the inclined head-to-head wall by
1 order of magnitude for small incline angles theta pi/40 by up 3 orders of
magnitude for the counter domain wall (theta=pi/2). Two separate regions of the
space charge accumulation exist across an inclined tail-to-tail wall: the thin
region in the immediate vicinity of the wall with accumulated mobile holes and
the much wider region with ionized donors. The conductivity across the
tail-to-tail wall is at least an order of magnitude smaller than the one of the
head-to-head wall due to the low mobility of holes, which are improper carries.
The results are in qualitative agreement with recent experimental data for
LiNbO3 doped with MgO.Comment: 20 pages, 6 figures, 1 appendi
- …
