238 research outputs found

    On formal verification of arithmetic-based cryptographic primitives

    Full text link
    Cryptographic primitives are fundamental for information security: they are used as basic components for cryptographic protocols or public-key cryptosystems. In many cases, their security proofs consist in showing that they are reducible to computationally hard problems. Those reductions can be subtle and tedious, and thus not easily checkable. On top of the proof assistant Coq, we had implemented in previous work a toolbox for writing and checking game-based security proofs of cryptographic primitives. In this paper we describe its extension with number-theoretic capabilities so that it is now possible to write and check arithmetic-based cryptographic primitives in our toolbox. We illustrate our work by machine checking the game-based proofs of unpredictability of the pseudo-random bit generator of Blum, Blum and Shub, and semantic security of the public-key cryptographic scheme of Goldwasser and Micali.Comment: 13 page

    The Range of Topological Effects on Communication

    Full text link
    We continue the study of communication cost of computing functions when inputs are distributed among kk processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of the network also has a processor, with no input. The communication is point-to-point and the cost is the total number of bits exchanged by the protocol, in the worst case, on all edges. Chattopadhyay, Radhakrishnan and Rudra (FOCS'14) recently initiated a study of the effect of topology of the network on the total communication cost using tools from L1L_1 embeddings. Their techniques provided tight bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. This work addresses two other kinds of natural functions. We show that for a large class of natural functions like Set-Disjointness the communication cost is essentially nn times the cost of the optimal Steiner tree connecting the terminals. Further, we show for natural composed functions like ED∘XOR\text{ED} \circ \text{XOR} and XOR∘ED\text{XOR} \circ \text{ED}, the naive protocols suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend on more involved topological parameters that are a combination of Steiner tree and 1-median costs. To obtain our results, we use some new tools in addition to ones used in Chattopadhyay et. al. These include (i) viewing the communication constraints via a linear program; (ii) using tools from the theory of tree embeddings to prove topology sensitive direct sum results that handle the case of composed functions and (iii) representing the communication constraints of certain problems as a family of collection of multiway cuts, where each multiway cut simulates the hardness of computing the function on the star topology

    Online unit clustering in higher dimensions

    Full text link
    We revisit the online Unit Clustering and Unit Covering problems in higher dimensions: Given a set of nn points in a metric space, that arrive one by one, Unit Clustering asks to partition the points into the minimum number of clusters (subsets) of diameter at most one; while Unit Covering asks to cover all points by the minimum number of balls of unit radius. In this paper, we work in Rd\mathbb{R}^d using the L∞L_\infty norm. We show that the competitive ratio of any online algorithm (deterministic or randomized) for Unit Clustering must depend on the dimension dd. We also give a randomized online algorithm with competitive ratio O(d2)O(d^2) for Unit Clustering}of integer points (i.e., points in Zd\mathbb{Z}^d, d∈Nd\in \mathbb{N}, under L∞L_{\infty} norm). We show that the competitive ratio of any deterministic online algorithm for Unit Covering is at least 2d2^d. This ratio is the best possible, as it can be attained by a simple deterministic algorithm that assigns points to a predefined set of unit cubes. We complement these results with some additional lower bounds for related problems in higher dimensions.Comment: 15 pages, 4 figures. A preliminary version appeared in the Proceedings of the 15th Workshop on Approximation and Online Algorithms (WAOA 2017

    Recurrence of biased quantum walks on a line

    Full text link
    The Polya number of a classical random walk on a regular lattice is known to depend solely on the dimension of the lattice. For one and two dimensions it equals one, meaning unit probability to return to the origin. This result is extremely sensitive to the directional symmetry, any deviation from the equal probability to travel in each direction results in a change of the character of the walk from recurrent to transient. Applying our definition of the Polya number to quantum walks on a line we show that the recurrence character of quantum walks is more stable against bias. We determine the range of parameters for which biased quantum walks remain recurrent. We find that there exist genuine biased quantum walks which are recurrent.Comment: Journal reference added, minor corrections in the tex

    Stochastic Budget Optimization in Internet Advertising

    Full text link
    Internet advertising is a sophisticated game in which the many advertisers "play" to optimize their return on investment. There are many "targets" for the advertisements, and each "target" has a collection of games with a potentially different set of players involved. In this paper, we study the problem of how advertisers allocate their budget across these "targets". In particular, we focus on formulating their best response strategy as an optimization problem. Advertisers have a set of keywords ("targets") and some stochastic information about the future, namely a probability distribution over scenarios of cost vs click combinations. This summarizes the potential states of the world assuming that the strategies of other players are fixed. Then, the best response can be abstracted as stochastic budget optimization problems to figure out how to spread a given budget across these keywords to maximize the expected number of clicks. We present the first known non-trivial poly-logarithmic approximation for these problems as well as the first known hardness results of getting better than logarithmic approximation ratios in the various parameters involved. We also identify several special cases of these problems of practical interest, such as with fixed number of scenarios or with polynomial-sized parameters related to cost, which are solvable either in polynomial time or with improved approximation ratios. Stochastic budget optimization with scenarios has sophisticated technical structure. Our approximation and hardness results come from relating these problems to a special type of (0/1, bipartite) quadratic programs inherent in them. Our research answers some open problems raised by the authors in (Stochastic Models for Budget Optimization in Search-Based Advertising, Algorithmica, 58 (4), 1022-1044, 2010).Comment: FINAL versio

    Quantum transport on two-dimensional regular graphs

    Get PDF
    We study the quantum-mechanical transport on two-dimensional graphs by means of continuous-time quantum walks and analyse the effect of different boundary conditions (BCs). For periodic BCs in both directions, i.e., for tori, the problem can be treated in a large measure analytically. Some of these results carry over to graphs which obey open boundary conditions (OBCs), such as cylinders or rectangles. Under OBCs the long time transition probabilities (LPs) also display asymmetries for certain graphs, as a function of their particular sizes. Interestingly, these effects do not show up in the marginal distributions, obtained by summing the LPs along one direction.Comment: 22 pages, 11 figure, acceted for publication in J.Phys.

    The effect of large-decoherence on mixing-time in Continuous-time quantum walks on long-range interacting cycles

    Full text link
    In this paper, we consider decoherence in continuous-time quantum walks on long-range interacting cycles (LRICs), which are the extensions of the cycle graphs. For this purpose, we use Gurvitz's model and assume that every node is monitored by the corresponding point contact induced the decoherence process. Then, we focus on large rates of decoherence and calculate the probability distribution analytically and obtain the lower and upper bounds of the mixing time. Our results prove that the mixing time is proportional to the rate of decoherence and the inverse of the distance parameter (\emph{m}) squared. This shows that the mixing time decreases with increasing the range of interaction. Also, what we obtain for \emph{m}=0 is in agreement with Fedichkin, Solenov and Tamon's results \cite{FST} for cycle, and see that the mixing time of CTQWs on cycle improves with adding interacting edges.Comment: 16 Pages, 2 Figure

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    Terrestrial Implications of Cosmological Gamma-Ray Burst Models

    Get PDF
    The observation by the BATSE instrument on the Compton Gamma Ray Observatory that gamma-ray bursts (GRBs) are distributed isotropically around the Earth but nonuniformly in distance has led to the widespread conclusion that GRBs are most likely to be at cosmological distances, making them the most luminous sources known in the Universe. If bursts arise from events that occur in normal galaxies, such as neutron star binary inspirals, then they will also occur in our Galaxy about every hundred thousand to million years. The gamma-ray flux at the Earth due to a Galactic GRB would far exceed that from even the largest solar flares. The absorption of this radiation in the atmosphere would substantially increase the stratospheric nitric oxide concentration through photodissociation of N2_2, greatly reducing the ozone concentration for several years through NOx_x catalysis, with important biospheric effects due to increased solar ultraviolet flux. A nearby GRB may also leave traces in anomalous radionuclide abundances.Comment: uuencoded, gzip-ed postscript; 6 pages; submitted to ApJ Letter

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems
    • 

    corecore