683 research outputs found

    Reconciliation of a Quantum-Distributed Gaussian Key

    Full text link
    Two parties, Alice and Bob, wish to distill a binary secret key out of a list of correlated variables that they share after running a quantum key distribution protocol based on continuous-spectrum quantum carriers. We present a novel construction that allows the legitimate parties to get equal bit strings out of correlated variables by using a classical channel, with as few leaked information as possible. This opens the way to securely correcting non-binary key elements. In particular, the construction is refined to the case of Gaussian variables as it applies directly to recent continuous-variable protocols for quantum key distribution.Comment: 8 pages, 4 figures. Submitted to the IEEE for possible publication. Revised version to improve its clarit

    Cloning and Cryptography with Quantum Continuous Variables

    Get PDF
    The cloning of quantum variables with continuous spectra is investigated. We define a Gaussian 1-to-2 cloning machine, which copies equally well two conjugate variables such as position and momentum or the two quadrature components of a light mode. The resulting cloning fidelity for coherent states, namely F=2/3F=2/3, is shown to be optimal. An asymmetric version of this Gaussian cloner is then used to assess the security of a continuous-variable quantum key distribution scheme that allows two remote parties to share a Gaussian key. The information versus disturbance tradeoff underlying this continuous quantum cryptographic scheme is then analyzed for the optimal individual attack. Methods to convert the resulting Gaussian keys into secret key bits are also studied. The extension of the Gaussian cloner to optimal NN-to-MM continuous cloners is then discussed, and it is shown how to implement these cloners for light modes, using a phase-insensitive optical amplifier and beam splitters. Finally, a phase-conjugated inputs (N,N′)(N,N')-to-(M,M′)(M,M') continuous cloner is defined, yielding MM clones and M′M' anticlones from NN replicas of a coherent state and N′N' replicas of its phase-conjugate (with M′−M=N′−NM'-M=N'-N). This novel kind of cloners is shown to outperform the standard NN-to-MM cloners in some situations.Comment: 8 pages, 3 figures, submitted to the special issue of the European Physical Journal D on "Quantum interference and cryptographic keys: novel physics and advancing technologies", proceedings of the conference QUICK 2001, Corsica, April 7-13 2001. Minor correction, references adde

    Security of Quantum Key Distribution with Coherent States and Homodyne Detection

    Full text link
    We assess the security of a quantum key distribution protocol relying on the transmission of Gaussian-modulated coherent states and homodyne detection. This protocol is shown to be equivalent to a squeezed state protocol based on a CSS code construction, and is thus provably secure against any eavesdropping strategy. We also briefly show how this protocol can be generalized in order to improve the net key rate.Comment: 7 page

    Experimental linear-optical implementation of a multifunctional optimal qubit cloner

    Full text link
    We present the first experimental implementation of a multifunctional device for the optimal cloning of one to two qubits. Previous implementations have always been designed to optimize the cloning procedure with respect to one single type of a priori information about the cloned state. In contrast, our "all-in-one" implementation is optimal for several prominent regimes such as universal cloning, phase-covariant cloning, and also the first ever realized mirror phase-covariant cloning, when the square of the expected value of Pauli's Z operator is known in advance. In all these regimes the experimental device yields clones with almost maximum achievable average fidelity (97.5% of theoretical limit). Our device has a wide range of possible applications in quantum information processing, especially in quantum communication. For instance, one can use it for incoherent and coherent attacks against a variety of cryptographic protocols, including the Bennett-Brassard 1984 protocol of quantum key distribution through the Pauli damping channels. It can be also applied as a state-dependent photon multiplier in practical quantum networks.Comment: 9 pages, 6 figures, accepted to Phys. Rev. A (Rapid Communications

    Secure Coherent-state Quantum Key Distribution Protocols with Efficient Reconciliation

    Full text link
    We study the equivalence between a realistic quantum key distribution protocol using coherent states and homodyne detection and a formal entanglement purification protocol. Maximally-entangled qubit pairs that one can extract in the formal protocol correspond to secret key bits in the realistic protocol. More specifically, we define a qubit encoding scheme that allows the formal protocol to produce more than one entangled qubit pair per coherent state, or equivalently for the realistic protocol, more than one secret key bit. The entanglement parameters are estimated using quantum tomography. We analyze the properties of the encoding scheme and investigate its application to the important case of the attenuation channel.Comment: REVTeX, 11 pages, 2 figure

    Subjects with medial and lateral tibiofemoral articular cartilage defects do not alter compartmental loading during walking

    Get PDF
    Background Healthy cartilage is essential for optimal joint function. Although, articular cartilage defects are highly prevalent in the active population and hamper joint function, the effect of articular cartilage defects on knee loading is not yet documented. Therefore, the present study compared knee contact forces and pressures between patients with tibiofemoral cartilage defects and healthy controls. Potentially this provides additional insights in movement adaptations and the role of altered loading in the progression from defect towards OA. Methods Experimental gait data collected in 15 patients with isolated cartilage defects (8 medial involvement, 7 lateral-involvement) and 19 healthy asymptomatic controls was processed using a musculoskeletal model to calculate contact forces and pressures. Differences between two patient groups and controls were evaluated using Kruskal-Wallis tests and individually compared using Mann-Whitney-U tests (alpha <0.05). Findings The patients with lateral involvement walked significantly slower compared to the healthy controls. No movement adaptations to decrease the loading on the injured condyle were observed. Additionally, the location of loading was not significantly affected. Interpretation The current results suggest that isolated cartilage defects do not induce significant changes in the knee joint loading distribution. Consequently, the involved condyle will capture a physiological loading magnitude that should however be distributed over the cartilage surrounding the defect. This may cause local degenerative changes in the cartilage and in combination with inflammatory responses, might play a key role in the progression from articular cartilage defect to a more severe OA phenotype

    The Measure of the Orthogonal Polynomials Related to Fibonacci Chains: The Periodic Case

    Full text link
    The spectral measure for the two families of orthogonal polynomial systems related to periodic chains with N-particle elementary unit and nearest neighbour harmonic interaction is computed using two different methods. The interest is in the orthogonal polynomials related to Fibonacci chains in the periodic approximation. The relation of the measure to appropriately defined Green's functions is established.Comment: 19 pages, TeX, 3 scanned figures, uuencoded file, original figures on request, some misprints corrected, tbp: J. Phys.

    Quantum Distribution of Gaussian Keys with Squeezed States

    Full text link
    A continuous key distribution scheme is proposed that relies on a pair of canonically conjugate quantum variables. It allows two remote parties to share a secret Gaussian key by encoding it into one of the two quadrature components of a single-mode electromagnetic field. The resulting quantum cryptographic information vs disturbance tradeoff is investigated for an individual attack based on the optimal continuous cloning machine. It is shown that the information gained by the eavesdropper then simply equals the information lost by the receiver.Comment: 5 pages, RevTe
    • …
    corecore