We present the first experimental implementation of a multifunctional device
for the optimal cloning of one to two qubits. Previous implementations have
always been designed to optimize the cloning procedure with respect to one
single type of a priori information about the cloned state. In contrast, our
"all-in-one" implementation is optimal for several prominent regimes such as
universal cloning, phase-covariant cloning, and also the first ever realized
mirror phase-covariant cloning, when the square of the expected value of
Pauli's Z operator is known in advance. In all these regimes the experimental
device yields clones with almost maximum achievable average fidelity (97.5% of
theoretical limit). Our device has a wide range of possible applications in
quantum information processing, especially in quantum communication. For
instance, one can use it for incoherent and coherent attacks against a variety
of cryptographic protocols, including the Bennett-Brassard 1984 protocol of
quantum key distribution through the Pauli damping channels. It can be also
applied as a state-dependent photon multiplier in practical quantum networks.Comment: 9 pages, 6 figures, accepted to Phys. Rev. A (Rapid Communications