168 research outputs found
Win at All Costs or Lose Gracefully in High-Stakes Competition? Gender Differences in Professional Tennis
This article examines line-call challenges by male and female professional tennis players in major tournaments around the world. In terms of utilization rates, we find that the genders behave similarly. Nevertheless, we do detect some intriguing gender differences in these challenges. First, male players’ challenges are more likely to be provoked by those of their opponents. More importantly, at tiebreaks, females are more likely to reverse an umpire’s unfavorable call, while males make relatively more unsuccessful challenges. Furthermore, we find that men are a lot more likely to make “embarrassing” line-call challenges at tiebreaks and offenses (i.e., when the shot lands at the opponent’s side of the tennis court) than women. These significant gender differences suggest that women particularly diverge from men at crucial junctures of the match such as tiebreaks. Differences in factors such as risk aversion, overconfidence, pride, shame, and strategic signalling behavior might help us to explain these gender-difference findings in line call challenges
N=2 SYM Action as a BRST Exact Term, Topological Yang Mills and Instantons
By constructing a nilpotent extended BRST operator \bs that involves the
N=2 global supersymmetry transformations of one chirality, we show that the
standard N=2 off-shell Super Yang Mills Action can be represented as an exact
BRST term \bs \Psi, if the gauge fermion is allowed to depend on the
inverse powers of supersymmetry ghosts. By using this nonanalytical structure
of the gauge fermion (via inverse powers of supersymmetry ghosts), we give
field redefinitions in terms of composite fields of supersymmetry ghosts and
N=2 fields and we show that Witten's topological Yang Mills theory can be
obtained from the ordinary Euclidean N=2 Super Yang Mills theory directly by
using such field redefinitions. In other words, TYM theory is obtained as a
change of variables (without twisting). As a consequence it is found that
physical and topological interpretations of N=2 SYM are intertwined together
due to the requirement of analyticity of global SUSY ghosts. Moreover, when
after an instanton inspired truncation of the model is used, we show that the
given field redefinitions yield the Baulieu-Singer formulation of Topological
Yang Mills.Comment: Latex, 1+15 pages. Published versio
Noncommutative gravity coupled to fermions: second order expansion via Seiberg-Witten map
We use the Seiberg-Witten map (SW map) to expand noncommutative gravity
coupled to fermions in terms of ordinary commuting fields. The action is
invariant under general coordinate transformations and local Lorentz rotations,
and has the same degrees of freedom as the commutative gravity action. The
expansion is given up to second order in the noncommutativity parameter
{\theta}. A geometric reformulation and generalization of the SW map is
presented that applies to any abelian twist. Compatibility of the map with
hermiticity and charge conjugation conditions is proven. The action is shown to
be real and invariant under charge conjugation at all orders in {\theta}. This
implies the bosonic part of the action to be even in {\theta}, while the
fermionic part is even in {\theta} for Majorana fermions.Comment: 27 pages, LaTeX. Revised version with proof of charge conjugation
symmetry of the NC action and its parity under theta --> - theta (see new
sect. 2.6, sect. 6 and app. B). References added. arXiv admin note:
substantial text overlap with arXiv:0902.381
The maximally entangled symmetric state in terms of the geometric measure
The geometric measure of entanglement is investigated for permutation
symmetric pure states of multipartite qubit systems, in particular the question
of maximum entanglement. This is done with the help of the Majorana
representation, which maps an n qubit symmetric state to n points on the unit
sphere. It is shown how symmetries of the point distribution can be exploited
to simplify the calculation of entanglement and also help find the maximally
entangled symmetric state. Using a combination of analytical and numerical
results, the most entangled symmetric states for up to 12 qubits are explored
and discussed. The optimization problem on the sphere presented here is then
compared with two classical optimization problems on the S^2 sphere, namely
Toth's problem and Thomson's problem, and it is observed that, in general, they
are different problems.Comment: 18 pages, 15 figures, small corrections and additions to contents and
reference
PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa
WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar
Growth Performance and Root Transcriptome Remodeling of Arabidopsis in Response to Mars-Like Levels of Magnesium Sulfate
Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. at 180 min. after initiation of treatment. mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils
Contemporary contestations over working time: time for health to weigh in
Non-communicable disease (NCD) incidence and prevalence is of central concern to most nations, along with international agencies such as the UN, OECD, IMF and World Bank. As a result, the search has begun for ‘causes of the cause’ behind health risks and behaviours responsible for the major NCDs. As part of this effort, researchers are turning their attention to charting the temporal nature of societal changes that might be associated with the rapid rise in NCDs. From this, the experience of time and its allocation are increasingly understood to be key individual and societal resources for health (7–9). The interdisciplinary study outlined in this paper will produce a systematic analysis of the behavioural health dimensions, or ‘health time economies’ (quantity and quality of time necessary for the practice of health behaviours), that have accompanied labour market transitions of the last 30 years - the period in which so many NCDs have risen sharply
Genome-wide analysis of WRKY gene family in Cucumis sativus
<p>Abstract</p> <p>Background</p> <p>WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as <it>Arabidopsis</it>.</p> <p>Results</p> <p>We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (<it>CsWRKY</it>) genes were classified into three groups (group 1-3). Analysis of expression profiles of <it>CsWRKY </it>genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible <it>CsWRKY </it>genes were correlated with those of their putative <it>Arabidopsis WRKY (AtWRKY) </it>orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 <it>AtWRKY </it>genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among <it>CsWRKY </it>group 3 genes, which may have led to the expressional divergence of group 3 orthologs.</p> <p>Conclusions</p> <p>Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.</p
- …