145 research outputs found

    Hyperpolarized 13C magnetic resonance imaging of fumarate metabolism by parahydrogen-induced polarization: a proof-of-concept in vivo study

    Get PDF
    Hyperpolarized [1-13C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13C]fumarate at sufficient 13C polarization for ex vivo detection of hyperpolarized 13C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    AAV2-Mediated Subretinal Gene Transfer of hIFN-α Attenuates Experimental Autoimmune Uveoretinitis in Mice

    Get PDF
    BACKGROUND: Recent reports show that gene therapy may provide a long-term, safe and effective intervention for human diseases. In this study, we investigated the effectiveness of adeno-associated virus 2 (AAV2) based human interferon-alpha (hIFN-α) gene therapy in experimental autoimmune uveoretinitis (EAU), a classic model for human uveitis. METHODOLOGY/PRINCIPAL FINDINGS: An AAV2 vector harboring the hIFN-α gene (AAV2.hIFN-α) was subretinally injected into B10RIII mice at two doses (1.5×10(6) vg, 1.5×10(8) vg). AAV2 vector encoding green fluorescent protein (AAV2.GFP) was used as a control (5×10(8) vg). The expression of hIFN-α in homogenized eyes and serum was detected by ELISA three weeks after injection. The biodistribution of vector DNA in the injected eyes, contralateral eyes and distant organs was determined by PCR. EAU was induced by immunization with IRBP(161-180) three weeks following vector injections, and evaluated clinically and pathologically. IRBP-specific proliferation and IL-17 expression of lymphocytes from the spleen and lymph nodes were assayed to test the influence of the subretinal delivery of AAV2.hIFN-α on the systemic immune response. hIFN-α was effectively expressed in the eyes from three weeks to three months following subretinal injection of AAV2.hIFN-α vector. DNA of AAV2.GFP was observed only in the injected eyes, but not in the distant organs or contralateral eyes. Subretinal injection of both doses significantly attenuated EAU activity clinically and histologically. For the lower dose, there was no difference concerning lymphocyte proliferation and IL-17 production among the AAV2.hIFN-α, AAV2.GFP and PBS injected mice. However, the higher dose of AAV2.hIFN-α significantly suppressed lymphocyte proliferation and IL-17 production. CONCLUSIONS/SIGNIFICANCE: Subretinal delivery of AAV2.hIFN-α lead to an effective expression within the eye for at least three months and significantly attenuated EAU activity. AAV2.hIFN-α was shown to inhibit the systemic IRBP-specific immune response

    Intra-articular temperatures of the knee in sports – An in-vivo study of jogging and alpine skiing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Up to date, no information exists about the intra-articular temperature changes of the knee related to activity and ambient temperature.</p> <p>Methods</p> <p>In 6 healthy males, a probe for intra-articular measurement was inserted into the notch of the right knee. Each subject was jogging on a treadmill in a closed room at 19°C room temperature and skiing in a ski resort at -3°C outside temperature for 60 minutes. In both conditions, temperatures were measured every fifteen minutes intra-articulary and at the skin surface of the knee. A possible influence on joint function and laxity was evaluated before and after activity. Statistical analysis of intra-articular and skin temperatures was done using nonparametric Wilcoxon's sign rank sum test and Mann-Whitney's-U-Test.</p> <p>Results</p> <p>Median intra-articular temperatures increased from 31.4°C before activity by 2.1°C, 4°C, 5.8°C and 6.1°C after 15, 30, 45 and 60 min of jogging (all p ≤ 0.05). Median intra-articular temperatures dropped from 32.2°C before activity by 0.5°C, 1.9°C, 3.6°C and 1.1°C after 15, 30, 45 and 60 min of skiing (all n.s.). After 60 minutes of skiing (jogging), the median intra-articular temperature was 19.6% (8.7%) higher than the skin surface temperature at the knee. Joint function and laxity appeared not to be different before and after activity within both groups.</p> <p>Conclusion</p> <p>This study demonstrates different changes of intra-articular and skin temperatures during sports in jogging and alpine skiing and suggests that changes are related to activity and ambient temperature.</p

    Protein C Mutation (A267T) Results in ER Retention and Unfolded Protein Response Activation

    Get PDF
    BACKGROUND: Protein C (PC) deficiency is associated with a high risk of venous thrombosis. Recently, we identified the PC-A267T mutation in a patient with PC deficiency and revealed by in vitro studies decreased intracellular and secreted levels of the mutant. The aim of the present study was to characterize the underlying mechanism(s). METHODOLOGY/PRINCIPAL FINDINGS: CHO-K1 cells stably expressing the wild-type (PC-wt) or the PC mutant were generated. In order to examine whether the PC mutant was subjected to increased intracellular degradation, the cells were treated with several inhibitors of various degradation pathways and pulse-chase experiments were performed. Protein-chaperone complexes were analyzed by treating the cells with a cross-linker followed by Western blotting (WB). Expression levels of the immunoglobulin-binding protein (BiP) and the phosphorylated eukaryotic initiation factor 2α (P-eIF2α), both common ER stress markers, were determined by WB to examine if the mutation induced ER stress and unfolded protein response (UPR) activation. We found no major differences in the intracellular degradation between the PC variants. The PC mutant was retained in the endoplasmic reticulum (ER) and had increased association with the Grp-94 and calreticulin chaperones. Retention of the PC-A267T in ER resulted in UPR activation demonstrated by increased expression levels of the ER stress markers BiP and P-eIF2α and caused also increased apoptotic activity in CHO-K1 cells as evidenced by elevated levels of DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The reduced intracellular level and impaired secretion of the PC mutant were due to retention in ER. In contrast to other PC mutations, retention of the PC-A267T in ER resulted in minor increased proteasomal degradation, rather it induced ER stress, UPR activation and apoptosis

    ggstThe role of tendon microcirculation in Achilles and patellar tendinopathy

    Get PDF
    Tendinopathy is of distinct interest as it describes a painful tendon disease with local tenderness, swelling and pain associated with sonographic features such as hypoechogenic texture and diameter enlargement. Recent research elucidated microcirculatory changes in tendinopathy using laser Doppler flowmetry and spectrophotometry such as at the Achilles tendon, the patellar tendon as well as at the elbow and the wrist level. Tendon capillary blood flow is increased at the point of pain. Tendon oxygen saturation as well as tendon postcapillary venous filling pressures, determined non-invasively using combined Laser Doppler flowmetry and spectrophotometry, can quantify, in real-time, how tendon microcirculation changes over with pathology or in response to a given therapy. Tendon oxygen saturation can be increased by repetitive, intermittent short-term ice applications in Achilles tendons; this corresponds to 'ischemic preconditioning', a method used to train tissue to sustain ischemic damage. On the other hand, decreasing tendon oxygenation may reflect local acidosis and deteriorating tendon metabolism. Painful eccentric training, a common therapy for Achilles, patellar, supraspinatus and wrist tendinopathy decreases abnormal capillary tendon flow without compromising local tendon oxygenation. Combining an Achilles pneumatic wrap with eccentric training changes tendon microcirculation in a different way than does eccentric training alone; both approaches reduce pain in Achilles tendinopathy. The microcirculatory effects of measures such as extracorporeal shock wave therapy as well as topical nitroglycerine application are to be studied in tendinopathy as well as the critical question of dosage and maintenance. Interestingly it seems that injection therapy using color Doppler for targeting the area of neovascularisation yields to good clinical results with polidocanol sclerosing therapy, but also with a combination of epinephrine and lidocaine

    Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arthroscopy is a highly sensitive method of evaluating high-grade cartilage lesions but the detection of low-grade lesions is often is unreliable. Objective measurements are required. A novel NIRS (near-infrared-spectroscopy) device for detection of low-grade cartilage defects was evaluated in a preliminary clinical study.</p> <p>Methods</p> <p>In 12 patients who had undergone arthroscopy, the cartilage lesions within the medial knee compartment were classified according to the ICRS protocol.</p> <p>With a NIR spectrometer system and an optical probe, similar in design to a hook used for routine arthroscopy, the optical properties of cartilage were measured during arthroscopy.</p> <p>Results</p> <p>The mean ratio of 2 NIR absorption bands of intact cartilage 3.8 (range 2.3 to 8.7).was significantly lower than that of cartilage with grade 1 lesions (12.8, range 4.8 to 19.6) and grade 2 lesions (13.4, range 10.4 to 15.4).</p> <p>No differences were observed between grade 1 and grade 2 lesions.</p> <p>Conclusion</p> <p>NIRS can be used to distinguish between ICRS grade 1 lesions and healthy cartilage during arthroscopic surgeries. The results of this clinical study demonstrate the potential of NIRS to objectify classical arthroscopic grading systems.</p

    Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants

    Get PDF
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups

    A Potent Inhibitor of SIK2, 3, 3′, 7-Trihydroxy-4′-Methoxyflavon (4′-O-Methylfisetin), Promotes Melanogenesis in B16F10 Melanoma Cells

    Get PDF
    Flavonoids, which are plant polyphenols, are now widely used in supplements and cosmetics. Here, we report that 4′-methylflavonoids are potent inducers of melanogenesis in B16F10 melanoma cells and in mice. We recently identified salt inducible kinase 2 (SIK2) as an inhibitor of melanogenesis via the suppression of the cAMP-response element binding protein (CREB)-specific coactivator 1 (TORC1). Using an in vitro kinase assay targeting SIK2, we identified fisetin as a candidate inhibitor, possibly being capable of promoting melanogenesis. However, fisetin neither inhibited the CREB-inhibitory activity of SIK2 nor promoted melanogenesis in B16F10 melanoma cells. Conversely, mono-methyl-flavonoids, such as diosmetin (4′-O-metlylluteolin), efficiently inhibited SIK2 and promoted melanogenesis in this cell line. The cAMP-CREB system is impaired in Ay/a mice and these mice have yellow hair as a result of pheomelanogenesis, while Sik2+/−; Ay/a mice also have yellow hair, but activate eumelanogenesis when they are exposed to CREB stimulators. Feeding Sik2+/−; Ay/a mice with diets supplemented with fisetin resulted in their hair color changing to brown, and metabolite analysis suggested the presence of mono-methylfisetin in their feces. Thus, we decided to synthesize 4′-O-methylfisetin (4′MF) and found that 4′MF strongly induced melanogenesis in B16F10 melanoma cells, which was accompanied by the nuclear translocation of TORC1, and the 4′-O-methylfisetin-induced melanogenic programs were inhibited by the overexpression of dominant negative TORC1. In conclusion, compounds that modulate SIK2 cascades are helpful to regulate melanogenesis via TORC1 without affecting cAMP levels, and the combined analysis of Sik2+/− mice and metabolites from these mice is an effective strategy to identify beneficial compounds to regulate CREB activity in vivo
    corecore