12 research outputs found

    Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4.

    No full text
    International audienceMutations in NLGN4X have been identified in individuals with autism spectrum disorders and other neurodevelopmental disorders. A previous study reported that adult male mice lacking neuroligin4 (Nlgn4) displayed social approach deficits in the three-chambered test, altered aggressive behaviors and reduced ultrasonic vocalizations. To replicate and extend these findings, independent comprehensive analyses of autism-relevant behavioral phenotypes were conducted in later generations of the same line of Nlgn4 mutant mice at the National Institute of Mental Health in Bethesda, MD, USA and at the Institut Pasteur in Paris, France. Adult social approach was normal in all three genotypes of Nlgn4 mice tested at both sites. Reciprocal social interactions in juveniles were similarly normal across genotypes. No genotype differences were detected in ultrasonic vocalizations in pups separated from the nest or in adults during reciprocal social interactions. Anxiety-like behaviors, self-grooming, rotarod and open field exploration did not differ across genotypes, and measures of developmental milestones and general health were normal. Our findings indicate an absence of autism-relevant behavioral phenotypes in subsequent generations of Nlgn4 mice tested at two locations. Testing environment and methods differed from the original study in some aspects, although the presence of normal sociability was seen in all genotypes when methods taken from Jamain et al. (2008) were used. The divergent results obtained from this study indicate that phenotypes may not be replicable across breeding generations, and highlight the significant roles of environmental, generational and/or procedural factors on behavioral phenotypes

    Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2

    No full text
    Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3{alpha}{beta}(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype

    Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2

    No full text
    Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3{alpha}{beta}(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype

    Activation of adult-born neurons facilitates learning and memory

    No full text
    International audienceThousand of local interneurons reach the olfactory bulb of adult rodents every day, but the functional effect of this process remains elusive. By selectively expressing channelrhodopsin in postnatal-born mouse neurons, we found that their activation accelerated difficult odor discrimination learning and improved memory. This amelioration was seen when photoactivation occurred simultaneously with odor presentation, but not when odor delivery lagged by 500 ms. In addition, learning was facilitated when light flashes were delivered at 40 Hz, but not at 10 Hz. Both in vitroand in vivoelectrophysiological recordings of mitral cells revealed that 40-Hz stimuli produced enhanced GABAergic inhibition compared with 10-Hz stimulation. Facilitation of learning occurred specifically when photoactivated neurons were generated during adulthood. Taken together, our results demonstrate an immediate causal relationship between the activity of adult-born neurons and the function of the olfactory bulb circuit

    5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice

    No full text
    International audienceRATIONALE: Blockade of 5-HT6 receptors (5-HT6R) is known to improve cognitive performances in the rodent. This improvement has been hypothesized to be the result, at least in part, of a modulation of the cholinergic neurotransmission. OBJECTIVE: We assessed the effects of 5-HT6R blockade on selected types of memory relevant to functional deficits of ageing and neurodegenerative diseases, in mice that present a scopolamine-induced cholinergic disruption of memory. METHOD: Following the selection of an adequate dose of scopolamine to induce cognitive deficits, we have studied the effects of the selective 5-HT6R antagonist SB-271046, alone or in combination with scopolamine, on working memory (spontaneous alternation task in the T-maze), recognition memory (place recognition) and aversive learning (passive avoidance). RESULTS: SB-271046 alone failed to affect working memory, recognition memory and aversive learning performances. In contrast, SB-271046 was able to reverse the scopolamine-induced deficits in working memory (only at 30 mg kg⁻¹) and those of acquisition and retrieval of aversive learning (dose-dependent effect); scopolamine-induced deficits in episodic-like memory (acquisition and retrieval) were partially counteracted by 5-HT6R blockade. CONCLUSION: The modulation between 5-HT6R and the cholinergic system appears to be predominant for working memory and aversive learning, but not for other types of memory (i.e. episodic-like memory). Interactions between 5-HT6R and alternative neurotransmission systems (i.e. glutamatergic system) should be further studied. The respective involvement of these interactions in the memory disorders related to ageing and neurodegenerative diseases is of pivotal importance regarding the possible use of 5-HT6R antagonists in the treatment of memory disorders in humans

    Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking.

    No full text
    International audienceCholinergic neurotransmission affects decision-making, notably through the modulation of perceptual processing in the cortex. In addition, acetylcholine acts on value-based decisions through as yet unknown mechanisms. We found that nicotinic acetylcholine receptors (nAChRs) expressed in the ventral tegmental area (VTA) are involved in the translation of expected uncertainty into motivational value. We developed a multi-armed bandit task for mice with three locations, each associated with a different reward probability. We found that mice lacking the nAChR β2 subunit showed less uncertainty-seeking than their wild-type counterparts. Using model-based analysis, we found that reward uncertainty motivated wild-type mice, but not mice lacking the nAChR β2 subunit. Selective re-expression of the β2 subunit in the VTA was sufficient to restore spontaneous bursting activity in dopamine neurons and uncertainty-seeking. Our results reveal an unanticipated role for subcortical nAChRs in motivation induced by expected uncertainty and provide a parsimonious account for a wealth of behaviors related to nAChRs in the VTA expressing the β2 subunit
    corecore