45 research outputs found

    Nonlinear Site Response During the 7 September 1999 Athens, Greece, Earthquake (M\u3csub\u3eW\u3c/sub\u3e 5.6)

    Get PDF
    The largest available strong-motion recording (PGA=0.35g), least affected by topography, structural response and/or soil-structure interaction, is investigated for possible nonlinear site response during the M, 5.9 Athens earthquake of 7 September 1999. Smoothed horizontal-to-vertical spectral ratios (HVSR) are calculated in subsequent overlapping 3.5-s windows, thus covering a wide range of excitation levels. Mean HVSR curves are computed for a so-called “weak-“ and “strong-“ motion range (mean horizontal ground acceleration in window, MGA\u3c=10.2 cm/s/s and \u3e=20.5 cm/s/s). The two curves have similar shape, with the “strong” curve visibly shifted toward lower frequencies relative to the “weak” one; the dominant site resonance occurs at 4.0 Hz (0.25 s) and 4.7 Hz (0.21 s), respectively. Linear correlation analysis shows that the resonance frequency, f0, and MGA are significantly correlated (t=-0.661). We attribute this behaviour to the degradation of the sediment shear modulus (nonlinearity). Our results, combined with indications that sediment sites in the near-fault area were exposed to ground shaking well above PGA=0.35 g during the earthquake of 7 September 1999, imply that these sites exhibited considerable nonlinear response

    Toward Reliable Characterization of Sites With Pronounced Topography and Related Effects on Ground Motion

    Get PDF
    Here we present first results of a joint effort undertaken in ongoing European project NERA -JRA1, which aims at establishing scientifically solid and practically acceptable propositions to incorporate surface topography effects in seismic hazard estimates. We assembled a dataset of both ambient vibration and earthquake recordings acquired at 40 European sites with pronounced topography. It comprises a wide variety of sites including populated hills and even extreme cases of unstable rock slopes in Alpine regions. Results of the polarisation analysis for the two sites presented here show the peculiarity of the topographic site effects

    Empirical evaluation of microtremor H/V spectral ratio

    Get PDF
    The objective of this work is to perform a purely empirical assessment of the actual capabilities of the horizontal-to-vertical (H/V) spectral ratio technique to provide reliable and relevant information concerning site conditions and/or site amplification. This objective has been tackled through the homogeneous (re)processing of a large volume of earthquakes and ambient noise data recorded by different research teams in more than 200 sites located mainly in Europe, but also in the Caribbean and in Tehran. The original recordings were first gathered in a specific database with information on both the sites and recorded events. Then, for all sites close to an instrumented reference, average site-to-reference spectral ratios (“spectral ratio method” (SSR)) were derived in a homogeneous way (window selection, smoothing, signal-to-noise ratio threshold, averaging), as well as H/V ratios (“HVSRE–RF”) on earthquake recordings. H/V ratios were also obtained from noise recordings at each site (either specific measurements, or extracted from pre- or post-event noise windows). The spectral curves resulting from these three techniques were estimated reliable for a subset of 104 sites, and were thus compared in terms of fundamental frequency, amplitude and amplification bandwidth, exhibiting agreements and disagreements, for which interpretations are looked for in relation with characteristics of site conditions. The first important result consists in the very good agreement between fundamental frequencies obtained with either technique, observed for 81% of the analyzed sites. A significant part of the disagreements correspond to thick, low frequency, continental sites where natural noise level is often very low and H/V noise ratios do not exhibit any clear peak. The second important result is the absence of correlation between H/V peak amplitude and the actual site amplification measured on site-to-reference spectral ratios. There are, however, two statistically significant results about the amplitude of the H/V curve: the peak amplitude may be considered as a lower bound estimate of the actual amplification indicated by SSR (it is smaller for 79% of the 104 investigated sites), and, from another point of view, the difference in amplitude exhibits a questioning correlation with the geometrical characteristics of the sediment/basement interface: large SSR/HV differences might thus help to detect the existence of significant 2D or 3D effects.Published75-1084.1. Metodologie sismologiche per l'ingegneria sismicaJCR Journalreserve

    Developments in Ground Motion Predictive Models and Accelerometric Data Archiving in the Broader European Region

    Get PDF
    This paper summarizes the evolution of major strong-motion databases and ground-motion prediction equations (GMPEs) for shallow active crustal regions (SACRs) in Europe and surrounding regions. It concludes with some case studies to show the sensitivity of hazard results at different seismicity levels and exceedance rates for local (developed from country-specific databases) and global (based on databases of multiple countries) GMPEs of the same region. The case studies are enriched by considering other global GMPEs of SACRs that are recently developed in the USA. The hazard estimates computed from local and global GMPEs from the broader Europe as well as those obtained from global GMPEs developed in the US differ. These differences are generally significant and their variation depends on the annual exceedance rate and seismicity. Current efforts to improve the accelerometric data archives in the broader Europe as well as more refined GMPEs that will be developed from these databases would help the researchers to understand the above mentioned differences in seismic hazard

    Estimation of fracture height using microseismicity associated with hydraulic fracturing

    No full text
    corecore