352 research outputs found

    Multiple wavelengths reflectance microscopy to study the multi-physical behavior of MEMS

    Get PDF
    International audienceIn order to characterize surface chemomechanical driving micro-electro-mechanical systems (MEMS) behavior, we propose herein a method to simultaneously obtain a full kinematic field describing the surface displacement and a map of its chemical modification from optical measurements. Using a microscope, reflected intensity fields are recorded for two different illumination wavelengths. Decoupling the wavelength-independent and -dependent contributions to the measured relative intensity changes then yields the sought fields. This method is applied to the investigation of the electro-elastic coupling, providing images of both the local surface electrical charge density and the device deformation field

    Radiative quantum efficiency in an InAs/AlSb intersubband transition

    Get PDF
    The quantum efficiency of an electroluminescent intersubband emitter based on InAs/AlSb has been measured as a function of the magnetic field up to 20T. Two series of oscillations periodic in 1/B are observed, corresponding to the elastic and inelastic scattering of electrons of the upper state of the radiative transitions. Experimental results are accurately reproduced by a calculation of the excited state lifetime as a function of the applied magnetic field. The interpretation of these data gives an exact measure of the relative weight of the scattering mechanisms and allows the extraction of material parameters such as the energy dependent electron effective mass and the optical phonon energy.Comment: 4 pages, 5 figure

    The effect of inelastic processes on tunneling

    Full text link
    We study an electron that interacts with phonons or other linear or nonlinear excitations as it resonantly tunnels. The method we use is based on mapping a many-body problem in a large variational space exactly onto a one-body problem. The method is conceptually simpler than previous Green's function approaches, and allows the essentially exact numerical solution of much more general problems. We solve tunneling problems with transverse channels, multiple sites coupled to phonons, and multiple phonon degrees of freedom and excitations.Comment: 12 pages, REVTex, 4 figures in compressed tar .ps forma

    Demonstration and frequency noise characterization of a 17 μ\mum quantum cascade laser

    Full text link
    We describe the properties of a continuous-wave room-temperature quantum cascade laser operating at the long wavelength of 17 μ\mum. Long wavelength mid-infrared quantum cascade lasers offer new opportunities for chemical detection, vibrational spectroscopy and metrological measurements using molecular species. In particular, probing low energy vibrational transitions would be beneficial to the spectroscopy of large and complex molecules, reducing intramolecular vibrational energy redistribution which acts as a decoherence channel. By performing linear absorption spectroscopy of the v2 fundamental vibrational mode of N2O molecules, we have demonstrated the spectral range and spectroscopic potential of this laser, and characterized its free-running frequency noise properties. Finally, we also discuss the potential application of this specific laser in an experiment to test fundamental physics with ultra-cold molecules

    Singularities and Topology of Meromorphic Functions

    Full text link
    We present several aspects of the "topology of meromorphic functions", which we conceive as a general theory which includes the topology of holomorphic functions, the topology of pencils on quasi-projective spaces and the topology of polynomial functions.Comment: 21 pages, 1 figur

    Chiral tunneling and the Klein paradox in graphene

    Full text link
    The so-called Klein paradox - unimpeded penetration of relativistic particles through high and wide potential barriers - is one of the most exotic and counterintuitive consequences of quantum electrodynamics (QED). The phenomenon is discussed in many contexts in particle, nuclear and astro- physics but direct tests of the Klein paradox using elementary particles have so far proved impossible. Here we show that the effect can be tested in a conceptually simple condensed-matter experiment by using electrostatic barriers in single- and bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum tunneling in these materials becomes highly anisotropic, qualitatively different from the case of normal, nonrelativistic electrons. Massless Dirac fermions in graphene allow a close realization of Klein's gedanken experiment whereas massive chiral fermions in bilayer graphene offer an interesting complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure

    Acoustic Phonon-Assisted Resonant Tunneling via Single Impurities

    Full text link
    We perform the investigations of the resonant tunneling via impurities embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the I(V)I(V) characteristics measured at 30mK, the contribution of individual donors is resolved and the fingerprints of phonon assistance in the tunneling process are seen. The latter is confirmed by detailed analysis of the tunneling rates and the modeling of the resonant tunneling contribution to the current. Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge singularities are observed.Comment: accepted in Phys. Rev.
    corecore