31 research outputs found

    Effect of commercial breakfast fibre cereals compared with corn flakes on postprandial blood glucose, gastric emptying and satiety in healthy subjects: a randomized blinded crossover trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dietary fibre food intake is related to a reduced risk of developing diabetes mellitus. However, the mechanism of this effect is still not clear. The aim of this study was to evaluate the effect of commercial fibre cereals on the rate of gastric emptying, postprandial glucose response and satiety in healthy subjects.</p> <p>Methods</p> <p>Gastric emptying rate (GER) was measured by standardized real time ultrasonography. Twelve healthy subjects were assessed using a randomized crossover blinded trial. The subjects were examined after an 8 hour fast and after assessment of normal fasting blood glucose level. Satiety scores were estimated and blood glucose measurements were taken before and at 0, 20, 30, 40, 60, 80, 100 and 120 min after the end of the meal. GER was calculated as the percentage change in the antral cross-sectional area 15 and 90 min after ingestion of sour milk with corn flakes (GER1), cereal bran flakes (GER2) or wholemeal oat flakes (GER3).</p> <p>Results</p> <p>The median value was, respectively, 42% for GER1, 33 % for GER2 and 51% for GER3. The difference between the GER after ingestion of bran flakes compared to wholemeal oat flakes was statistically significant (p = 0.023). The postprandial delta blood glucose level was statistically significantly lower at 40 min (p = 0.045) and 120 min (p = 0.023) after the cereal bran flakes meal. There was no statistical significance between the areas under the curve (AUCs) of the cereals as far as blood glucose and satiety were concerned.</p> <p>Conclusion</p> <p>The result of this study demonstrates that the intake of either bran flakes or wholemeal oat flakes has no effect on the total postprandial blood glucose response or satiety when compared to corn flakes. However, the study does show that the intake of cereal bran flakes slows the GER when compared to oat flakes and corn flakes, probably due to a higher fibre content. Since these products do not differ in terms of glucose response and satiety on healthy subjects, they should be considered equivalent in this respect.</p> <p>Trial registration</p> <p>ISRCTN90535566</p

    Micronutrient fortification of food and its impact on woman and child health: A systematic review

    Get PDF
    Background: Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies.Methods: A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1.Results: Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children.Conclusion: Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality

    Bioavailability of fatty acids from krill oil, krill meal and fish oil in healthy subjects–a randomized, single-dose, cross-over trial

    Get PDF
    Background Krill contains two marine omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mainly bound in phospholipids. Typical products from krill are krill oil and krill meal. Fish oils contain EPA and DHA predominantly bound in triglycerides. The difference in the chemical binding of EPA and DHA has been suggested to affect their bioavailability, but little is known on bioavailability of EPA and DHA in krill meal. This study was undertaken to compare the acute bioavailability of two krill products, krill oil and krill meal, with fish oil in healthy subjects. Methods A randomized, single-dose, single-blind, cross-over, active-reference trial was conducted in 15 subjects, who ingested krill oil, krill meal and fish oil, each containing approx. 1 700 mg EPA and DHA. Fatty acid compositions of plasma triglycerides and phospholipids were measured repeatedly for 72 hours. The primary efficacy analysis was based on the 72 hour incremental area under the curve (iAUC) of EPA and DHA in plasma phospholipid fatty acids. Results A larger iAUC for EPA and DHA in plasma phospholipid fatty acids was detected after krill oil (mean 89.08 ± 33.36% × h) than after krill meal (mean 44.97 ± 18.07% x h, p < 0.001) or after fish oil (mean 59.15 ± 22.22% × h, p=0.003). Mean iAUC’s after krill meal and after fish oil were not different. A large inter-individual variability in response was observed. Conclusion EPA and DHA in krill oil had a higher 72-hour bioavailability than in krill meal or fish oil. Our finding that bioavailabilities of EPA and DHA in krill meal and fish oil were not different argues against the interpretation that phospholipids are better absorbed than triglycerides. Longer-term studies using a parameter reflecting tissue fatty acid composition, like erythrocyte EPA plus DHA are needed

    Measuring the Glycemic Index of foods: interlaboratory study.

    No full text
    Background: Many laboratories offer glycemic index (GI) services. Objective: We assessed the performance of the method used to measure GI. Design: The GI of cheese-puffs and fruit-leather (centrally provided) was measured in 28 laboratories (n = 311 subjects) by using the FAO/WHO method. The laboratories reported the results of their calculations and sent the raw data for recalculation centrally. Results: Values for the incremental area under the curve (AUC) reported by 54% of the laboratories differed from central calculations. Because of this and other differences in data analysis, 19% of reported food GI values differed by > 5 units from those calculated centrally. GI values in individual subjects were unrelated to age, sex, ethnicity, body mass index, or AUC but were negatively related to within-individual variation (P = 0.033) expressed as the CV of the AUC for repeated reference food tests (refCV). The between-laboratory GI values (mean +/- SD) for cheese-puffs and fruit-leather were 74.3 +/- 10.5 and 33.2 +/- 7.2, respectively. The mean laboratory GI was related to refCV (P = 0.003) and the type of restrictions on alcohol consumption before the test (P = 0.006, r(2) = 0.509 for model). The within-laboratory SD of GI was related to refCV (P < 0.001), the glucose analysis method (P = 0.010), whether glucose measures were duplicated (P = 0.008), and restrictions on dinner the night before (P = 0.013, r(2) = 0.810 for model). Conclusions: The between-laboratory SD of the GI values is approximate to 9. Standardized data analysis and low within-subject variation (refCV < 30%) are required for accuracy. The results suggest that common misconceptions exist about which factors do and do not need to be controlled to improve precision. Controlled studies and cost-benefit analyses are needed to optimize GI methodology. The trial was registered at clinicaltrials.gov as NCT0026085
    corecore