477 research outputs found

    Bandit Online Optimization Over the Permutahedron

    Full text link
    The permutahedron is the convex polytope with vertex set consisting of the vectors (π(1),,π(n))(\pi(1),\dots, \pi(n)) for all permutations (bijections) π\pi over {1,,n}\{1,\dots, n\}. We study a bandit game in which, at each step tt, an adversary chooses a hidden weight weight vector sts_t, a player chooses a vertex πt\pi_t of the permutahedron and suffers an observed loss of i=1nπ(i)st(i)\sum_{i=1}^n \pi(i) s_t(i). A previous algorithm CombBand of Cesa-Bianchi et al (2009) guarantees a regret of O(nTlogn)O(n\sqrt{T \log n}) for a time horizon of TT. Unfortunately, CombBand requires at each step an nn-by-nn matrix permanent approximation to within improved accuracy as TT grows, resulting in a total running time that is super linear in TT, making it impractical for large time horizons. We provide an algorithm of regret O(n3/2T)O(n^{3/2}\sqrt{T}) with total time complexity O(n3T)O(n^3T). The ideas are a combination of CombBand and a recent algorithm by Ailon (2013) for online optimization over the permutahedron in the full information setting. The technical core is a bound on the variance of the Plackett-Luce noisy sorting process's "pseudo loss". The bound is obtained by establishing positive semi-definiteness of a family of 3-by-3 matrices generated from rational functions of exponentials of 3 parameters

    An efficient algorithm for learning with semi-bandit feedback

    Full text link
    We consider the problem of online combinatorial optimization under semi-bandit feedback. The goal of the learner is to sequentially select its actions from a combinatorial decision set so as to minimize its cumulative loss. We propose a learning algorithm for this problem based on combining the Follow-the-Perturbed-Leader (FPL) prediction method with a novel loss estimation procedure called Geometric Resampling (GR). Contrary to previous solutions, the resulting algorithm can be efficiently implemented for any decision set where efficient offline combinatorial optimization is possible at all. Assuming that the elements of the decision set can be described with d-dimensional binary vectors with at most m non-zero entries, we show that the expected regret of our algorithm after T rounds is O(m sqrt(dT log d)). As a side result, we also improve the best known regret bounds for FPL in the full information setting to O(m^(3/2) sqrt(T log d)), gaining a factor of sqrt(d/m) over previous bounds for this algorithm.Comment: submitted to ALT 201

    Unusual Low-Temperature Phase in VO2_2 Nanoparticles

    Full text link
    We present a systematic investigation of the crystal and electronic structure and the magnetic properties above and below the metal-insulator transition of ball-milled VO2_2 nanoparticles and VO2_2 microparticles. For this research, we performed a Rietveld analysis of synchrotron radiation x-ray diffraction data, O KK x-ray absorption spectroscopy, V L3L_3 resonant inelastic x-ray scattering, and magnetic susceptibility measurements. This study reveals an unusual low-temperature phase that involves the formation of an elongated and less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic contribution from the nanoparticles. We show that the change in the crystal structure is consistent with the change in the electronic states around the Fermi level, which leads us to suggest that the Peierls mechanism contributes to the energy splitting of the a1ga_{1g} state. Furthermore, we find that the high-temperature rutile structure of the nanoparticles is almost identical to that of the microparticles.Comment: 7 pages, 8 figures, 2 table

    Observation of the decay mode K_L -> pi^+ pi^- e^+ e^-

    Full text link
    We report on results of an experimental search for the K_L -> pi^+ pi^- e^+ e^- decay mode. We found 13.5 +- 4.0 events and determined its branching ratio to be (4.4 +- 1.3(stat) +- 0.5(syst))*10^{-7}. The result agrees well with the theoretical prediction.Comment: 9 pages, 6 eps-figures, LaTeX2e, graphicx package, submitted to Physics Letters

    Experimental search for the decay mode K_L -> pi^0 gamma e^+ e^-

    Full text link
    We report on results of a search for the decay mode K_L -> pi^0 gamma e^+ e^- conducted by the E162 experiment at KEK. We observed no events and set a 90% confidence level upper limit of Br(K_L -> pi^0 gamma e^+ e^-)< 7.1x10^{-7} for its branching ratio. This is the first published experimental result on this decay mode.Comment: 10 pages, 4 figures, submitted to Physics Letters
    corecore