11 research outputs found

    Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor

    Get PDF
    Much attention has recently been devoted to the life and behaviour of pharmaceuticals in the water cycle. In this study the behaviour of several pharmaceutical products in different therapeutic categories (analgesics and anti-inflammatory drugs, lipid regulators, antibiotics, etc.) was monitored during treatment of wastewater in a laboratory-scale membrane bioreactor (MBR). The results were compared with removal in a conventional activated-sludge (CAS) process in a wastewater-treatment facility. The performance of an MBR was monitored for approximately two months to investigate the long-term operational stability of the system and possible effects of solids retention time on the efficiency of removal of target compounds. Pharmaceuticals were, in general, removed to a greater extent by the MBR integrated system than during the CAS process. For most of the compounds investigated the performance of MBR treatment was better (removal rates >80%) and effluent concentrations of, e.g., diclofenac, ketoprofen, ranitidine, gemfibrozil, bezafibrate, pravastatin, and ofloxacin were steadier than for the conventional system. Occasionally removal efficiency was very similar, and high, for both treatments (e.g. for ibuprofen, naproxen, acetaminophen, paroxetine, and hydrochlorothiazide). The antiepileptic drug carbamazepine was the most persistent pharmaceutical and it passed through both the MBR and CAS systems untransformed. Because there was no washout of biomass from the reactor, high-quality effluent in terms of chemical oxygen demand (COD), ammonium content (N-NH(4)), total suspended solids (TSS), and total organic carbon (TOC) was obtained

    Impact of solid retention time and nitrification capacity on the ability of activated sludge to remove pharmaceuticals

    No full text
    Removal of five acidic pharmaceuticals (ibuprofen, ketoprofen, naproxen, diclofenac and clofibric acid) by activated sludge from five municipal activated sludge treatment processes, with various sludge ages and nitrification capacities, was assessed through batch experiments. The increase in aerobic sludge age from 1-3 to 7 d seemed to be critical for the removal of naproxen and ketoprofen, with markedly higher rates of removal at sludge ages of 7 d or more. No removal was shown for diclofenac and clofibric acid, whereas high rates were observed for ibuprofen in all investigated sludges. Parallel examinations of activated sludge batches with and without allylthiourea (12 mg/L), an inhibitor of ammonia monooxygenase, showed minor to moderate influence on the removal rates of ketoprofen and naproxen. These results suggest that the removal rates of biodegradable pharmaceuticals in municipal activated sludge processes are strongly linked to the heterotrophic bacteria community

    Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBOR Consortium

    No full text
    10.1371/journal.pgen.1006186PLoS Genetics129e100618

    The primary vascular dysregulation syndrome: implications for eye diseases

    Get PDF
    Vascular dysregulation refers to the regulation of blood flow that is not adapted to the needs of the respective tissue. We distinguish primary vascular dysregulation (PVD, formerly called vasospastic syndrome) and secondary vascular dysregulation (SVD). Subjects with PVD tend to have cold extremities, low blood pressure, reduced feeling of thirst, altered drug sensitivity, increased pain sensitivity, prolonged sleep onset time, altered gene expression in the lymphocytes, signs of oxidative stress, slightly increased endothelin-1 plasma level, low body mass index and often diffuse and fluctuating visual field defects. Coldness, emotional or mechanical stress and starving can provoke symptoms. Virtually all organs, particularly the eye, can be involved. In subjects with PVD, retinal vessels are stiffer and more irregular, and both neurovascular coupling and autoregulation capacity are reduced while retinal venous pressure is often increased. Subjects with PVD have increased risk for normal-tension glaucoma, optic nerve compartment syndrome, central serous choroidopathy, Susac syndrome, retinal artery and vein occlusions and anterior ischaemic neuropathy without atherosclerosis. Further characteristics are their weaker blood-brain and blood-retinal barriers and the higher prevalence of optic disc haemorrhages and activated astrocytes. Subjects with PVD tend to suffer more often from tinnitus, muscle cramps, migraine with aura and silent myocardial ischaemic and are at greater risk for altitude sickness. While the main cause of vascular dysregulation is vascular endotheliopathy, dysfunction of the autonomic nervous system is also involved. In contrast, SVD occurs in the context of other diseases such as multiple sclerosis, retrobulbar neuritis, rheumatoid arthritis, fibromyalgia and giant cell arteritis. Taking into consideration the high prevalence of PVD in the population and potentially linked pathologies, in the current article, the authors provide recommendations on how to effectively promote the field in order to create innovative diagnostic tools to predict the pathology and develop more efficient treatment approaches tailored to the person
    corecore