123 research outputs found

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    CXCR2 Signaling Protects Oligodendrocytes and Restricts Demyelination in a Mouse Model of Viral-Induced Demyelination

    Get PDF
    BACKGROUND: The functional role of ELR-positive CXC chemokines during viral-induced demyelination was assessed. Inoculation of the neuroattenuated JHM strain of mouse hepatitis virus (JHMV) into the CNS of susceptible mice results in an acute encephalomyelitis that evolves into a chronic demyelinating disease, modeling white matter pathology observed in the human demyelinating disease Multiple Sclerosis. METHODOLOGY/PRINCIPAL FINDINGS: JHMV infection induced the rapid and sustained expression of transcripts specific for the ELR+ chemokine ligands CXCL1 and CXCL2, as well as their binding receptor CXCR2, which was enriched within the spinal cord during chronic infection. Inhibiting CXCR2 signaling with neutralizing antiserum significantly (p<0.03) delayed clinical recovery. Moreover, CXCR2 neutralization was associated with an increase in the severity of demyelination that was independent of viral recrudescence or modulation of neuroinflammation. Rather, blocking CXCR2 was associated with increased numbers of apoptotic cells primarily within white matter tracts, suggesting that oligodendrocytes were affected. JHMV infection of enriched oligodendrocyte progenitor cell (OPC) cultures revealed that apoptosis was associated with elevated expression of cleaved caspase 3 and muted Bcl-2 expression. Inclusion of CXCL1 within JHMV infected cultures restricted caspase 3 cleavage and increased Bcl-2 expression that was associated with a significant (p<0.001) decrease in apoptosis. CXCR2 deficient oligodendrocytes were refractory to CXCL1 mediated protection from JHMV-induced apoptosis, readily activating caspase 3 and down regulating Bcl-2. CONCLUSION/SIGNIFICANCE: These findings highlight a previously unappreciated role for CXCR2 signaling in protecting oligodendrocyte lineage cells from apoptosis during inflammatory demyelination initiated by viral infection of the CNS

    A Sensitive Assay for Virus Discovery in Respiratory Clinical Samples

    Get PDF
    In 5–40% of respiratory infections in children, the diagnostics remain negative, suggesting that the patients might be infected with a yet unknown pathogen. Virus discovery cDNA-AFLP (VIDISCA) is a virus discovery method based on recognition of restriction enzyme cleavage sites, ligation of adaptors and subsequent amplification by PCR. However, direct discovery of unknown pathogens in nasopharyngeal swabs is difficult due to the high concentration of ribosomal RNA (rRNA) that acts as competitor. In the current study we optimized VIDISCA by adjusting the reverse transcription enzymes and decreasing rRNA amplification in the reverse transcription, using hexamer oligonucleotides that do not anneal to rRNA. Residual cDNA synthesis on rRNA templates was further reduced with oligonucleotides that anneal to rRNA but can not be extended due to 3β€²-dideoxy-C6-modification. With these modifications >90% reduction of rRNA amplification was established. Further improvement of the VIDISCA sensitivity was obtained by high throughput sequencing (VIDISCA-454). Eighteen nasopharyngeal swabs were analysed, all containing known respiratory viruses. We could identify the proper virus in the majority of samples tested (11/18). The median load in the VIDISCA-454 positive samples was 7.2 E5 viral genome copies/ml (ranging from 1.4 E3–7.7 E6). Our results show that optimization of VIDISCA and subsequent high-throughput-sequencing enhances sensitivity drastically and provides the opportunity to perform virus discovery directly in patient material

    A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis

    Get PDF
    The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2βˆ’/βˆ’ mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2βˆ’/βˆ’ mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2βˆ’/βˆ’ mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS

    Introduction: Nonviolent Resistance in the Second Intifada

    No full text

    Specific interaction between coronavirus leader RNA and nucleocapsid protein.

    Get PDF
    Northwestern blot analysis in the presence of competitor RNA was used to examine the interaction between the mouse hepatitis virus (MHV) nucleocapsid protein (N) and virus-specific RNAs. Our accompanying article demonstrates that anti-N monoclonal antibodies immunoprecipitated all seven MHV-specific RNAs as well as the small leader-containing RNAs from infected cells. In this article we report that a Northwestern blotting protocol using radiolabeled viral RNAs in the presence of host cell competitor RNA can be used to demonstrate a high-affinity interaction between the MHV N protein and the virus-specific RNAs. Further, RNA probes prepared by in vitro transcription were used to define the sequences that participate in such high-affinity binding. A specific interaction occurs between the N protein and sequences contained with the leader RNA which is conserved at the 5' end of all MHV RNAs. We have further defined the binding sites to the area of nucleotides 56 to 65 at the 3' end of the leader RNA and suggest that this interaction may play an important role in the discontinuous nonprocessive RNA transcriptional process unique to coronaviruses
    • …
    corecore