54 research outputs found

    A luciferase-based quick potency assay to predict chondrogenic differentiation.

    Get PDF
    Chondrogenic differentiation of adipose derived stem cells (ASC) is challenging but highly promising for cartilage repair. Large donor variability of chondrogenic differentiation potential raises the risk for transplantation of cells with reduced efficacy and a low chondrogenic potential. Therefore quick potency assays are required in order to control the potency of the isolated cells before cell transplantation. Current in vitro methods to analyze the differentiation potential are time consuming and thus, a novel enhancer and tissue-specific promoter combination was employed for the detection of chondrogenic differentiation of ASC in a novel quick potency bioassay. Human primary ASC were co-transfected with the Metridia luciferase based collagen type II reporter gene pCMVE_ACDCII-MetLuc together with a Renilla control plasmid and analyzed for their chondrogenic potential. On day 3 after chondrogenic induction, the luciferase activity was induced in all tested donors under three dimensional (3D) culture conditions and in a second approach also under 2D culture conditions. With our newly developed quick potency bioassay we can determine chondrogenic potential already after 3 days of chondrogenic induction and under 2D culture conditions. This will enhance the efficiency of testing cell functionality, which should allow in the future to predict the suitability of cells derived from individual patients for cell therapies, in a very short time and at low costs

    Mesenchymal Stem Cells Induce T-Cell Tolerance and Protect the Preterm Brain after Global Hypoxia-Ischemia

    Get PDF
    Hypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI) was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 106MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI), in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE

    Modulation von Arbeitsgedächtnisfunktionen durch Modafinil

    No full text

    Modulation von Arbeitsgedächtnisfunktionen durch Modafinil

    No full text
    Nordostorientier

    Effects of modafinil on working memory processes in humans

    No full text
    RATIONALE: Modafinil is a well-tolerated psychostimulant drug with low addictive potential that is used to treat patients with narcolepsy or attention deficit disorders and to enhance vigilance in sleep-deprived military personal. So far, understanding of the cognitive enhancing effects of modafinil and the relevant neurobiological mechanisms are incomplete. OBJECTIVES: The aim of this study was to investigate the effects of modafinil on working memory processes in humans and how they are related to noradrenergic stimulation of the prefrontal cortex. METHODS: Sixteen healthy volunteers (aged 20-29 years) received either modafinil 200 mg or placebo using a double blind crossover design. Two computerized working memory tasks were administered, a numeric manipulation task that requires short-term maintenance of digit-sequences and different degrees of manipulation as well as delayed matching task that assesses maintenance of visuo-spatial information over varying delay lengths. The battery was supplemented by standardized paper pencil tasks of attentional functions. RESULTS: Modafinil significantly reduced error rates in the long delay condition of the visuo-spatial task and in the manipulation conditions, but not in the maintenance condition of the numeric task. Analyses of reaction times showed no speed-accuracy trade-off. Attentional control tasks (letter cancellation, trail-making, catch trials) were not affected by modafinil. CONCLUSIONS: In healthy volunteers without sleep deprivation modafinil has subtle stimulating effects on maintenance and manipulation processes in relatively difficult and monotonous working memory tasks, especially in lower performing subjects. Overlapping attentional and working memory processes have to be considered when studying the noradrenergic modulation of the prefrontal cortex

    Postpartum thunderclap headache

    No full text
    corecore