4,079 research outputs found
Taking into account the vertical drift of molecular ions when determining the kinetic parameters of ionization-recombination processes in the F2-layer maximum
Height distribution analysis for kinetic molecular ionization-recombination processes in F 2 region during solar activitie
Lattice Distortion and Magnetism of 3d- Perovskite Oxides
Several puzzling aspects of interplay of the experimental lattice distortion
and the the magnetic properties of four narrow -band perovskite oxides
(YTiO, LaTiO, YVO, and LaVO) are clarified using results of
first-principles electronic structure calculations. First, we derive parameters
of the effective Hubbard-type Hamiltonian for the isolated bands using
newly developed downfolding method for the kinetic-energy part and a hybrid
approach, based on the combination of the random-phase approximation and the
constraint local-density approximation, for the screened Coulomb interaction
part. Then, we solve the obtained Hamiltonian using a number of techniques,
including the mean-field Hartree-Fock (HF) approximation, the second-order
perturbation theory for the correlation energy, and a variational superexchange
theory. Even though the crystal-field splitting is not particularly large to
quench the orbital degrees of freedom, the crystal distortion imposes a severe
constraint on the form of the possible orbital states, which favor the
formation of the experimentally observed magnetic structures in YTiO,
YVO_, and LaVO even at the HF level. Beyond the HF approximation, the
correlations effects systematically improve the agreement with the experimental
data. Using the same type of approximations we could not reproduce the correct
magnetic ground state of LaTiO. However, we expect that the situation may
change by systematically improving the level of approximations for dealing with
the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available
via e-mai
Theoretical Analysis of Electronic and Magnetic Properties of NaVO: Crucial Role of the Orbital Degrees of Freedom
Using realistic low-energy model with parameters derived from the
first-principles electronic structure calculation, we address the origin of the
quasi-one-dimensional behavior in orthorhombic NaVO, consisting of the
double chains of edge-sharing VO octahedra. We argue that the geometrical
aspect alone does not explain the experimentally observed anisotropy of
electronic and magnetic properties of NaVO. Instead, we attribute the
unique behavior of NaVO to one particular type of the orbital ordering,
which respects the orthorhombic symmetry. This orbital ordering acts to
divide all states into two types: the `localized' ones, which are
antisymmetric with respect to the mirror reflection , and
the symmetric `delocalized' ones. Thus, NaVO can be classified as the
double exchange system. The directional orientation of symmetric orbitals,
which form the metallic band, appears to be sufficient to explain both
quasi-one-dimensional character of interatomic magnetic interactions and the
anisotropy of electrical resistivity.Comment: 16 pages, 4 figure
Modeling of complex oxide materials from the first principles: systematic applications to vanadates RVO3 with distorted perovskite structure
"Realistic modeling" is a new direction of electronic structure calculations,
where the main emphasis is made on the construction of some effective
low-energy model entirely within a first-principle framework. Ideally, it is a
model in form, but with all the parameters derived rigorously, on the basis of
first-principles electronic structure calculations. The method is especially
suit for transition-metal oxides and other strongly correlated systems, whose
electronic and magnetic properties are predetermined by the behavior of some
limited number of states located near the Fermi level. After reviewing general
ideas of realistic modeling, we will illustrate abilities of this approach on
the wide series of vanadates RVO3 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, and Y)
with distorted perovskite structure. Particular attention will be paid to
computational tools, which can be used for microscopic analysis of different
spin and orbital states in the partially filled t2g-band. We will explicitly
show how the lifting of the orbital degeneracy by the monoclinic distortion
stabilizes C-type antiferromagnetic (AFM) state, which can be further
transformed to the G-type AFM state by changing the crystal distortion from
monoclinic to orthorhombic one. Two microscopic mechanisms of such a
stabilization, associated with the one-electron crystal field and electron
correlation interactions, are discussed. The flexibility of the orbital degrees
of freedom is analyzed in terms of the magnetic-state dependence of interatomic
magnetic interactions.Comment: 23 pages, 13 figure
Realization of anisotropic compass model on the diamond lattice of Cu in CuAlO
Spin-orbit (SO) Mott insulators are regarded as a new paradigm of magnetic
materials, whose properties are largely influenced by SO coupling and featured
by highly anisotropic bond-dependent exchange interactions between the
spin-orbital entangled Kramers doublets, as typically manifested in
iridates. Here, we propose that a very similar situation can be realized in
cuprates when the Cu ions reside in a tetrahedral environment, like in
spinel compounds. Using first-principles electronic structure calculations, we
construct a realistic model for the diamond lattice of the Cu ions in
CuAlO and show that the magnetic properties of this compound are
largely controlled by anisotropic compass-type exchange interactions that
dramatically modify the magnetic ground state by lifting the spiral spin-liquid
degeneracy and stabilizing a commensurate single- spiral
Noncollinear magnetism in distorted perovskite compounds
Using results of the band structure calculations in the local-spin-density
approximation we demonstrate how the crystal distortions affect the magnetic
structure of orthorhombically distorted perovskites leading to a non-collinear
spin arrangement. Our results suggest that the non-collinearity of the spin
magnetic moments, being generally small in LaO series with =Cr-Fe, is
large in SrRuO.Comment: 6 pagest, 1 figure, Proceedings of ICPTM '9
Hybridization and spin-orbit coupling effects in quasi-one-dimensional spin-1/2 magnet Ba3Cu3Sc4O12
We study electronic and magnetic properties of the quasi-one-dimensional
spin-1/2 magnet Ba3Cu3Sc4O12 with a distinct orthogonal connectivity of CuO4
plaquettes. An effective low-energy model taking into account spin-orbit
coupling was constructed by means of first-principles calculations. On this
basis a complete microscopic magnetic model of Ba3Cu3Sc4O12, including
symmetric and antisymmetric anisotropic exchange interactions, is derived. The
anisotropic exchanges are obtained from a distinct first-principles numerical
scheme combining, on one hand, the local density approximation taking into
account spin-orbit coupling, and, on the other hand, projection procedure along
with the microscopic theory by Toru Moriya. The resulting tensors of the
symmetric anisotropy favor collinear magnetic order along the structural chains
with the leading ferromagnetic coupling J1 = -9.88 meV. The interchain
interactions J8 = 0.21 meV and J5 = 0.093 meV are antiferromagnetic. Quantum
Monte Carlo simulations demonstrated that the proposed model reproduces the
experimental Neel temperature, magnetization and magnetic susceptibility data.
The modeling of neutron diffraction data reveals an important role of the
covalent Cu-O bonding in Ba3Cu3Sc4O12.Comment: 11 pages, 12 figure
Ferromagnetic zigzag chains and properties of the charge ordered perovskite manganites
The low-temperature properties of the so-called ''charge ordered'' state in
50% doped perovskite manganites are described from the viewpoint of the
magnetic spin ordering. In these systems, the zigzag antiferromagnetic
ordering, combined with the double-exchange physics, effectively divides the
whole sample into the one-dimensional ferromagnetic zigzag chains and results
in the anisotropy of electronic properties. The electronic structure of one
such chain is described by an effective 33 Hamiltonian in the basis of
Mn() orbitals. We treat this problem analytically and consider the
following properties: (i) the nearest-neighbor magnetic interactions; (ii) the
distribution of the Mn() and Mn() states near the Fermi level, and
their contribution to the optical conductivity and the resonant x-ray
scattering near the Mn -absorption edge. We argue that the anisotropy of
magnetic interactions in the double-exchange limit, combined with the isotropic
superexchange interactions, readily explains both the local and the global
stability of the zigzag antiferromagnetic state. The two-fold degeneracy of
levels plays a very important role in the problem and explains the
insulating behavior of the zigzag chain, as well as the appearance of the
orbital ordering in the double-exchange model. Importantly, however, the charge
ordering itself is expected to play only a minor role and is incompatible with
the ferromagnetic coupling within the chain. We also discuss possible effects
of the Jahn-Teller distortion and compare the tight-binding picture with
results of band structure calculations in the local-spin-density approximation.Comment: 35 pages, 8 figure
Origin of the giant magnetic moments of Fe impurities on and in Cs films
To explore the origin of the observed giant magnetic moments ()
of Fe impurities on the surface and in the bulk of Cs films, we have performed
the relativistic LSDA + U calculations using the linearized muffin-tin orbital
(LMTO) band method. We have found that Fe impurities in Cs behave differently
from those in noble metals or in Pd. Whereas the induced spin polarization of
Cs atoms is negligible, the Fe ion itself is found to be the source of the
giant magnetic moment. The 3d electrons of Fe in Cs are localized as the 4f
electrons in rare-earth ions so that the orbital magnetic moment becomes as
large as the spin magnetic moment. The calculated total magnetic moment of , which comes mainly from Fe ion, is close to the experimentally
observed value.Comment: 4 pages including 3 figures and 1 table. Submitted to PR
- …