420 research outputs found

    Random projections for Bayesian regression

    Get PDF
    This article deals with random projections applied as a data reduction technique for Bayesian regression analysis. We show sufficient conditions under which the entire dd-dimensional distribution is approximately preserved under random projections by reducing the number of data points from nn to k∈O(poly⁥(d/Δ))k\in O(\operatorname{poly}(d/\varepsilon)) in the case n≫dn\gg d. Under mild assumptions, we prove that evaluating a Gaussian likelihood function based on the projected data instead of the original data yields a (1+O(Δ))(1+O(\varepsilon))-approximation in terms of the ℓ2\ell_2 Wasserstein distance. Our main result shows that the posterior distribution of Bayesian linear regression is approximated up to a small error depending on only an Δ\varepsilon-fraction of its defining parameters. This holds when using arbitrary Gaussian priors or the degenerate case of uniform distributions over Rd\mathbb{R}^d for ÎČ\beta. Our empirical evaluations involve different simulated settings of Bayesian linear regression. Our experiments underline that the proposed method is able to recover the regression model up to small error while considerably reducing the total running time

    Dengue: a new challenge for neurology

    Get PDF
    Dengue infection is a leading cause of illness and death in tropical and subtropical regions of the world. Forty percent of the world’s population currently lives in these areas. The clinical picture resulting from dengue infection can range from relatively minor to catastrophic hemorrhagic fever. Recently, reports have increased of neurological manifestations. Neuropathogenesis seems to be related to direct nervous system viral invasion, autoimmune reaction, metabolic and hemorrhagic disturbance. Neurological manifestations include encephalitis, encephalopathy, meningitis, Guillain-Barré syndrome, myelitis, acute disseminated encephalomyelitis, polyneuropathy, mononeuropathy, and cerebromeningeal hemorrhage. The development of neurological symptoms in patients with positive Immunoglobulin M (IgM) dengue serology suggests a means of diagnosing the neurological complications associated with dengue. Viral antigens, specific IgM antibodies, and the intrathecal synthesis of dengue antibodies have been successfully detected in cerebrospinal fluid. However, despite diagnostic advancements, the treatment of neurological dengue is problematic. The launch of a dengue vaccine is expected to be beneficial

    Structure of particle-hole nuclei around 100Sn

    Full text link
    We have performed shell-model calculations for the three odd-odd nuclei 100In, 102In, and 98Ag, with neutron particles and proton holes around 100Sn. We have used a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential, the neutron-proton channel being explicitly treated in the particle-hole formalism. Particular attention has been focused on the particle-hole multiplets, which are a direct source of information on the neutron-proton effective interaction. We present our predictions for the two lowest lying multiplets in 100In, for which no spectroscopic data are yet available. For 98Ag and 102In comparison shows that our results are in very good agreement with the available experimental data.Comment: 5 pages, published in Physical review

    Purification of Single-photon Entanglement

    Full text link
    Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. Besides its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters.Comment: Main article: 5 pages, 4 figure

    High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels

    Get PDF
    We report a novel and simple approach for generating near-perfect quality polarization entanglement in a fully guided-wave fashion. Both deterministic pair separation into two adjacent telecommunication channels and the paired photons' temporal walk-off compensation are achieved using standard fiber components. Two-photon interference experiments are performed, both for quantitatively demonstrating the relevance of our approach, and for manipulating the produced state between bosonic and fermionic symmetries. The compactness, versatility, and reliability of this configuration makes it a potential candidate for quantum communication applications.Comment: 6 figure

    Interference of multi-mode photon echoes generated in spatially separated solid-state atomic ensembles

    Full text link
    High-visibility interference of photon echoes generated in spatially separated solid-state atomic ensembles is demonstrated. The solid state ensembles were LiNbO3_3 waveguides doped with Erbium ions absorbing at 1.53 Ό\mum. Bright coherent states of light in several temporal modes (up to 3) are stored and retrieved from the optical memories using two-pulse photon echoes. The stored and retrieved optical pulses, when combined at a beam splitter, show almost perfect interference, which demonstrates both phase preserving storage and indistinguishability of photon echoes from separate optical memories. By measuring interference fringes for different storage times, we also show explicitly that the visibility is not limited by atomic decoherence. These results are relevant for novel quantum repeaters architectures with photon echo based multimode quantum memories

    Interference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles

    Full text link
    We report an interference experiment of spontaneous emission of light from two distant solid-state ensembles of atoms that are coherently excited by a short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals with channel waveguides, which are placed in the two arms of a Mach-Zehnder interferometer. The light that is spontaneously emitted after the excitation pulse shows first-order interference. By a strong collective enhancement of the emission, the atoms behave as ideal two-level quantum systems and no which-path information is left in the atomic ensembles after emission of a photon. This results in a high fringe visibility of 95%, which implies that the observed spontaneous emission is highly coherent

    The N = 16 spherical shell closure in 24O

    Full text link
    The unbound excited states of the neutron drip-line isotope 24O have been investigated via the 24O(p,p')23O+n reaction in inverse kinematics at a beam energy of 62 MeV/nucleon. The decay energy spectrum of 24O* was reconstructed from the momenta of 23O and the neutron. The spin-parity of the first excited state, observed at Ex = 4.65 +/- 0.14 MeV, was determined to be Jpi = 2+ from the angular distribution of the cross section. Higher lying states were also observed. The quadrupole transition parameter beta2 of the 2+ state was deduced, for the first time, to be 0.15 +/- 0.04. The relatively high excitation energy and small beta2 value are indicative of the N = 16 shell closure in 24O.Comment: to be submitted to Physical Review Letter
    • 

    corecore