11 research outputs found

    Latent class analysis of diagnostic tests for adenovirus, Bordetella pertussis and influenza virus infections in German adults with longer lasting coughs

    Get PDF
    Laboratory tests in adult outpatients with longer lasting coughs to identify a potential causal pathogen are rarely performed, and there is no gold standard for these diagnostic tests. While the diagnostic validity of serological tests for pertussis is well established their potential contribution for diagnosing adenovirus and influenza virus A and B infections is unclear. A sentinel study into the population-based incidence of longer lasting coughs in adults was done in Rostock (former East Germany) and Krefeld (former West Germany). A total of 971 outpatients who consulted general practitioners or internists were included. Inclusion criteria were coughing for 51 week and no chronic respiratory diseases. We evaluated the performance of polymerase chain reaction (PCR) as well as IgG and IgA serology, applying a latent class model for diagnosing infections with adenovirus, B. pertussis, and influenza virus A and B. The adult outpatients first sought medical attention when they had been coughing for a median of 3 weeks. In this situation, direct detection of infectious agents by PCR had a low sensitivity. Modelling showed that additional serological tests equally improved sensitivity and specificity for diagnosis for adenovirus, B. pertussis and influenza virus A and B infections. The combination of serology and PCR may improve the overall performance of diagnostic tests for B. pertussis and also for adenovirus, and influenza virus A and B infections

    Pooled extracellular receptor-ligand interaction screening using CRISPR activation.

    Get PDF
    Extracellular interactions between cell surface receptors are necessary for signaling and adhesion but identifying them remains technically challenging. We describe a cell-based genome-wide approach employing CRISPR activation to identify receptors for a defined ligand. We show receptors for high-affinity antibodies and low-affinity ligands can be unambiguously identified when used in pools or as individual binding probes. We apply this technique to identify ligands for the adhesion G-protein-coupled receptors and show that the Nogo myelin-associated inhibitory proteins are ligands for ADGRB1. This method will enable extracellular receptor-ligand identification on a genome-wide scale

    Maternal smoking during pregnancy and offspring overweight : is there a dose–response relationship? An individual patient data meta-analysis

    Get PDF
    We want to thank the funders of the individual studies: the UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol, the Danish National Research Foundation, Pharmacy Foundation, the March of Dimes Birth Defects Foundation, the Augustinus Foundation, and the Health Foundation, the US NICHD (contracts no. 1-HD-4-2803 and no. 1-HD-1-3127, R01 HD HD034568), the NHMRC, the CNPq (Portuguese acronym for the National Research Council—grant 523474/96-2) and FAPESP (Portuguese acronym for the São Paulo State Research Council—grant 00/0908-7). We would like to thank the participating families of all studies for the use of data. For the ASPAC study, we want to thank the midwives for their help in recruiting families, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. This work was supported by the Deutschen Forschungsgesellschaft (German Research Foundation, DFG) [KR 1926/9-1, KU1443/4-1]. Dr. Gilman’s contribution was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.Peer reviewedPostprin

    Transcriptomic responses of cancerous and noncancerous human colon cells to sulforaphane and selenium

    Full text link
    Diets enriched with bioactive food components trigger molecular changes in cells that may contribute to either health-promoting or adverse effects. Recent technological advances in high-throughput data generation allow for observing systems-wide molecular responses to cellular perturbations with nontoxic and dietary-relevant doses while considering the intrinsic differences between cancerous and noncancerous cells. In this chemical profile, we compared molecular responses of the colon cancer cell line HT29 and a noncancerous colon epithelial cell line (HCEC) to two widely encountered food components, sulforaphane and selenium. We conducted this comparison by generating new transcriptome data by microarray gene-expression profiling, analyzing them statistically on the single gene, network, and functional pathway levels, and integrating them with protein expression data. Sulforaphane and selenium, at doses that did not inhibit the growth of the tested cells, induced or repressed the transcription of a limited number of genes in a manner distinctly dependent on the chemical and the cell type. The genes that most strongly responded in cancer cells were observed after treatment with sulforaphane and were members of the aldo-keto reductase (AKR) superfamily. These genes were in high agreement in terms of fold change with their corresponding proteins (correlation coefficient r(2) = 0.98, p = 0.01). Conversely, selenium had little influence on the cancer cells. In contrast, in noncancerous cells, selenium induced numerous genes involved in apoptotic, angiogenic, or tumor proliferation pathways, whereas the influence of sulforaphane was very limited. These findings contribute to defining the significance of cell type in interpreting human cellular transcriptome-level responses to exposures to natural components of the diet
    corecore