2,313 research outputs found
The Influences of Outflow on the Dynamics of Inflow
Both numerical simulations and observations indicate that in an
advection-dominated accretion flow most of the accretion material supplied at
the outer boundary will not reach the inner boundary. Rather, they are lost via
outflow. Previously, the influence of outflow on the dynamics of inflow is
taken into account only by adopting a radius-dependent mass accretion rate
with . In this paper, based on a 1.5
dimensional description to the accretion flow, we investigate this problem in
more detail by considering the interchange of mass, radial and azimuthal
momentum, and the energy between the outflow and inflow. The physical
quantities of the outflow is parameterized based on our current understandings
to the properties of outflow mainly from numerical simulations of accretion
flows. Our results indicate that under reasonable assumptions to the properties
of outflow, the main influence of outflow has been properly included by
adopting .Comment: 16 pages, 5 figures. accepted for publication in Ap
Secondary CMB anisotropies in a universe reionized in patches
In a universe reionized in patches, the Doppler effect from Thomson
scattering off free electrons generates secondary cosmic microwave background
(CMB) anisotropies. For a simple model with small patches and late
reionization, we analytically calculate the anisotropy power spectrum. Patchy
reionization can, in principle, be the main source of anisotropies on arcminute
scales. On larger angular scales, its contribution to the CMB power spectrum is
a small fraction of the primary signal and is only barely detectable in the
power spectrum with even an ideal, i.e. cosmic variance limited, experiment and
an extreme model of reionization. Consequently patchy reionization is unlikely
to affect cosmological parameter estimation from the acoustic peaks in the CMB.
Its detection on small angles would help determine the ionization history of
the universe, in particular the typical size of the ionized region and the
duration of the reionization process.Comment: 7 pages, 2 figures, submitted to Ap
Can we avoid dark energy?
The idea that we live near the centre of a large, nonlinear void has
attracted attention recently as an alternative to dark energy or modified
gravity. We show that an appropriate void profile can fit both the latest
cosmic microwave background and supernova data. However, this requires either a
fine-tuned primordial spectrum or a Hubble rate so low as to rule these models
out. We also show that measurements of the radial baryon acoustic scale can
provide very strong constraints. Our results present a serious challenge to
void models of acceleration.Comment: 5 pages, 4 figures; minor changes; version published in Phys. Rev.
Let
Star Captures by Quasar Accretion Disks: A Possible Explanation of the M-sigma Relation
A new theory of quasars is presented in which the matter of thin accretion
disks around black holes is supplied by stars that plunge through the disk.
Stars in the central part of the host galaxy are randomly perturbed to highly
radial orbits, and as they repeatedly cross the disk they lose orbital energy
by drag, eventually merging into the disk. Requiring the rate of stellar mass
capture to equal the mass accretion rate into the black hole, a relation
between the black hole mass and the stellar velocity dispersion is predicted of
the form M_{BH} \propto sigma_*^{30/7}. The normalization depends on various
uncertain parameters such as the disk viscosity, but is consistent with
observation for reasonable assumptions. We show that a seed central black hole
in a newly formed stellar system can grow at the Eddington rate up to this
predicted mass via stellar captures by the accretion disk. Once this mass is
reached, star captures are insufficient to maintain an Eddington accretion
rate, and the quasar may naturally turn off as the accretion switches to a
low-efficiency advection mode. The model provides a mechanism to deliver mass
to the accretion disk at small radius, probably solving the problem of
gravitational instability to star formation in the disk at large radius. We
note that the matter from stars that is incorporated to the disk has an average
specific angular momentum that is very small or opposite to that of the disk,
and discuss how a rotating disk may be maintained as it captures this matter if
a small fraction of the accreted mass comes from stellar winds that form a disk
extending to larger radius. We propose several observational tests and
consequences of this theory.Comment: submitted to Ap
Passive Evolution: Are the Faint Blue Galaxy Counts Produced by a Population of Eternally Young Galaxies?
A constant age population of blue galaxies, postulated in the model of
Gronwall & Koo (1995), seems to provide an attractive explanation of the excess
of very blue galaxies in the deep galaxy counts. Such a population may be
generated by a set of galaxies with cycling star formation rates, or at the
other extreme, be maintained by the continual formation of new galaxies which
fade after they reach the age specified in the Gronwall and Koo model. For both
of these hypotheses, we have calculated the luminosity functions including the
respective selection criteria, the redshift distributions, and the number
counts in the B_J and K bands. We find a substantial excess in the number of
galaxies at low redshift (0 < z < 0.05) over that observed in the CFH redshift
survey (Lilly et al. 1995) and at the faint end of the Las Campanas luminosity
function (Lin et al. 1996). Passive or mild evolution fails to account for the
deep galaxy counts because of the implications for low redshift determinations
of the I-selected redshift distribution and the r-selected luminosity function
in samples where the faded counterparts of the star-forming galaxies would be
detectable.Comment: 11 pages, LaTeX type (aaspp4.sty), 3 Postscript figures, submitted to
ApJ Letter
Angular Sizes of Faint Field Disk Galaxies: Intrinsic Luminosity Evolution
In order to explain the small scale-lengths detected in the recent deep field
observations performed from large ground-based telescopes and from the Hubble
Space Telescope, we investigate the predictions at high redshifts for disk
galaxies that formed by infall. Changes with redshift in the observed
properties of field galaxies are directly related to the evolution of the disks
and of the stellar populations. We see that changes in the rest frame
luminosity of a galaxy induce smaller values of half-light radii than are
predicted assuming no evolution. Comparisons are presented with two observed
samples from Mutz et al. (1994) and Smail et al. (1995).Comment: plain tex file + 3 postscript figures. To be published in ApJ
Can decaying modes save void models for acceleration?
The unexpected dimness of Type Ia supernovae (SNe), apparently due to
accelerated expansion driven by some form of dark energy or modified gravity,
has led to attempts to explain the observations using only general relativity
with baryonic and cold dark matter, but by dropping the standard assumption of
homogeneity on Hubble scales. In particular, the SN data can be explained if we
live near the centre of a Hubble-scale void. However, such void models have
been shown to be inconsistent with various observations, assuming the void
consists of a pure growing mode. Here it is shown that models with significant
decaying mode contribution today can be ruled out on the basis of the expected
cosmic microwave background spectral distortion. This essentially closes one of
the very few remaining loopholes in attempts to rule out void models, and
strengthens the evidence for Hubble-scale homogeneity.Comment: 11 pages, 3 figures; discussion expanded, appendix added; version
accepted to Phys. Rev.
- …
