Both numerical simulations and observations indicate that in an
advection-dominated accretion flow most of the accretion material supplied at
the outer boundary will not reach the inner boundary. Rather, they are lost via
outflow. Previously, the influence of outflow on the dynamics of inflow is
taken into account only by adopting a radius-dependent mass accretion rate
M˙=M˙0(r/rout)s with s>0. In this paper, based on a 1.5
dimensional description to the accretion flow, we investigate this problem in
more detail by considering the interchange of mass, radial and azimuthal
momentum, and the energy between the outflow and inflow. The physical
quantities of the outflow is parameterized based on our current understandings
to the properties of outflow mainly from numerical simulations of accretion
flows. Our results indicate that under reasonable assumptions to the properties
of outflow, the main influence of outflow has been properly included by
adopting M˙=M˙0(r/rout)s.Comment: 16 pages, 5 figures. accepted for publication in Ap