The idea that we live near the centre of a large, nonlinear void has
attracted attention recently as an alternative to dark energy or modified
gravity. We show that an appropriate void profile can fit both the latest
cosmic microwave background and supernova data. However, this requires either a
fine-tuned primordial spectrum or a Hubble rate so low as to rule these models
out. We also show that measurements of the radial baryon acoustic scale can
provide very strong constraints. Our results present a serious challenge to
void models of acceleration.Comment: 5 pages, 4 figures; minor changes; version published in Phys. Rev.
Let