203 research outputs found

    Directional Sensitivity of Echolocation System in Bats Producing Frequency-Modulated Signals

    Get PDF
    1. Radiation patterns of the 55, 75 and 95 kHz components in frequency-modulated sounds emitted by the grey bat (Myotis grisescens) were studied. FM sounds similar to species-specific orientation sounds were elicited by electrical stimuli applied to the midbrain while the head of the animal was immobilized by a nail cemented to its skull. The main beam was emitted 5-10Β° downward from the eye-nostril line. The radiation angle at one half of maximum amplitude was 38Β° lateral, 18Β° up and 50Β° down at 55 kHz, 34Β° lateral, 8Β° up and 32Β° down at 75 kHz, and 30Β° lateral, 5Β° up and 25Β° down at 95 kHz. At 95 kHz, two prominent side lobes were present. 2. The directional sensitivity of the auditory system (DSA) measured in terms of the potential evoked in the lateral lemniscus was studied with the grey bat (M. grisescens) and the little brown bat (M. lucifugus). The maximally sensitive direction moved toward the median plane with the increase in frequency from 35-95 kHz. The slope of the DSA curve increased from 0.3-0.6 dB/degree with frequency. 3. The directional sensitivity of the echolocation system (DSE) was calculated using both the DSA curve and the radiation pattern of the emitted sound. The maximally sensitive direction of the echolocation system was 15Β° lateral to the median plane at 55kHz and 2.5Β° lateral at 95 kHz. The slope of the DSE curve increased from o.6 to 1.0 dB/degree with frequency. Thus, the higher the frequency of sound, the sharper was the directional sensitivity of the echolocation system. 4. The interaural pressure difference (IPD), which appeared to be the essential cue for echolocation in Myotis, changed linearly with the azimuth angle from 0-30Β° lateral regardless of the frequency of sound, at respective rates of 0.4, 0.7, 0.3 and 0.4 dB/degree for 35, 55, 75 and 95 kHz sounds. Beyond 30Β°, the change in IPD was quite different depending on frequency. For 75 and 95 kHz sounds, the IPD stayed nearly the same between 30Β° and 90Β°. Thus, the 75-95 kHz components in FM orientation sounds were not superior to the 35 and 55 kHz components in terms of the IPD cue for echolocation. 5. Assuming the just-detectable IPD and ITD to be 0.5 dB and 5Β΅sec respectively, as in man, the just-detectable azimuth difference of Myotis around the median plane would be 0.7-1.7Β° with the IPD cue and 11Β° with the ITD cue

    Diphoton Production at Hadron Colliders and New Contact Interactions

    Full text link
    We explore the capability of the Tevatron and LHC to place limits on the possible existence of flavor-independent qqΛ‰Ξ³Ξ³q \bar q \gamma\gamma contact interactions which can lead to an excess of diphoton events with large invariant masses. Assuming no departure from the Standard Model is observed, we show that the Tevatron will eventually be able to place a lower bound of 0.5-0.6 TeV on the scale associated with this new contact interaction. At the LHC, scales as large as 3-6 TeV may be probed with suitable detector cuts and an integrated luminosity of 100fbβˆ’1100 fb^{-1}.Comment: LaTex, 12pages plus 5 figures(available on request), SLAC-PUB-657

    A Measurement of the Dβˆ—Β±D^{*\pm} Cross Section in Two-Photon Processes

    Get PDF
    We have measured the inclusive Dβˆ—Β±D^{*\pm} production cross section in a two-photon collision at the TRISTAN e+eβˆ’e^+e^- collider. The mean s\sqrt{s} of the collider was 57.16 GeV and the integrated luminosity was 150 pbβˆ’1pb^{-1}. The differential cross section (dΟƒ(Dβˆ—Β±)/dPTd\sigma(D^{*\pm})/dP_T) was obtained in the PTP_T range between 1.6 and 6.6 GeV and compared with theoretical predictions, such as those involving direct and resolved photon processes.Comment: 8 pages, Latex format (article), figures corrected, published in Phys. Rev. D 50 (1994) 187

    Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA).</p> <p>Case report</p> <p>Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of blood peroxisomal markers strongly suggested a peroxisomal biogenesis disorder. Sequencing of candidate <it>PEX </it>genes revealed a homozygous c.865_866insA mutation in the <it>PEX2 </it>gene leading to a frameshift 17 codons upstream of the stop codon. <it>PEX </it>gene mutations usually result in a severe neurological phenotype (Zellweger spectrum disorders).</p> <p>Conclusions</p> <p>Genetic screening of PEX2 and other PEX genes involved in peroxisomal biogenesis is warranted in children and adults with ARCA.</p

    A novel syndrome of paediatric cataract, dysmorphism, ectodermal features, and developmental delay in Australian Aboriginal family maps to 1p35.3-p36.32

    Get PDF
    Background: A novel phenotype consisting of cataract, mental retardation, erythematous skin rash and facial dysmorphism was recently described in an extended pedigree of Australian Aboriginal descent. Large scale chromosomal re-arrangements had previously been ruled out. We have conducted a genome-wide scan to map the linkage region in this family.Methods: Genome-wide linkage analysis using Single Nucleotide Polymorphism (SNP) markers on the Affymetrix 10K SNP array was conducted and analysed using MERLIN. Three positional candidate genes (ZBTB17, EPHA2 and EPHB2) were sequenced to screen for segregating mutations. Results: Under a fully penetrant, dominant model, the locus for this unique phenotype was mapped to chromosome 1p35.3-p36.32 with a maximum LOD score of 2.41. The critical region spans 48.7 cM between markers rs966321 and rs1441834 and encompasses 527 transcripts from 364 annotated genes. No coding mutations were identified in three positional candidate genes EPHA2, EPHB2 or ZBTB17. The region overlaps with a previously reported region for Volkmann cataract and the phenotype has similarity to that reported for 1p36 monosomy. Conclusions: The gene for this syndrome is located in a 25.6 Mb region on 1p35.3-p36.32. The known cataract gene in this region (EPHA2) does not harbour mutations in this family, suggesting that at least one additional gene for cataract is present in this region.Kathryn Hattersley, Kate J Laurie, Jan E Liebelt, Jozef Gecz, Shane R Durkin, Jamie E Craig and Kathryn P Burdo

    Drosophila Carrying Pex3 or Pex16 Mutations Are Models of Zellweger Syndrome That Reflect Its Symptoms Associated with the Absence of Peroxisomes

    Get PDF
    The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology

    A High-Speed Congenic Strategy Using First-Wave Male Germ Cells

    Get PDF
    BACKGROUND: In laboratory mice and rats, congenic breeding is essential for analyzing the genes of interest on specific genetic backgrounds and for analyzing quantitative trait loci. However, in theory it takes about 3-4 years to achieve a strain carrying about 99% of the recipient genome at the tenth backcrossing (N10). Even with marker-assisted selection, the so-called 'speed congenic strategy', it takes more than a year at N4 or N5. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new high-speed congenic system using round spermatids retrieved from immature males (22-25 days of age). We applied the technique to three genetically modified strains of mice: transgenic (TG), knockin (KI) and N-ethyl-N-nitrosourea (ENU)-induced mutants. The donor mice had mixed genetic backgrounds of C57BL/6 (B6):DBA/2 or B6:129 strains. At each generation, males used for backcrossing were selected based on polymorphic marker analysis and their round spermatids were injected into B6 strain oocytes. Backcrossing was repeated until N4 or N5. For the TG and ENU-mutant strains, the N5 generation was achieved on days 188 and 190 and the proportion of B6-homozygous loci was 100% (74 markers) and 97.7% (172/176 markers), respectively. For the KI strain, N4 was achieved on day 151, all the 86 markers being B6-homozygous as early as on day 106 at N3. The carrier males at the final generation were all fertile and propagated the modified genes. Thus, three congenic strains were established through rapid generation turnover between 41 and 44 days. CONCLUSIONS/SIGNIFICANCE: This new high-speed breeding strategy enables us to produce congenic strains within about half a year. It should provide the fastest protocol for precise definition of the phenotypic effects of genes of interest on desired genetic backgrounds

    Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers

    Get PDF
    Funding: This research was financially supported by the European Research Council under the European Union’s Horizon 2020 Framework Programme (FP/2014-2020)/ERC grant agreement no. 640012 (ABLASE), by EPSRC (grant no. EP/P030017/1) and by the RS Macdonald Charitable Trust. S.J.P. acknowledges funding by the Royal Society of Edinburgh (Biomedical Fellowship) and the British Heart Foundation (grant no. FS/17/9/32676). S.J.P. and G.B.R. acknowledge support from The Wellcome Trust Institutional Strategic Support Fund to the University of St Andrews (grant no. 204821/Z/16/A). M.S. acknowledges funding by the European Commission (Marie SkΕ‚odowska-Curie Individual Fellowship, 659213) and the Royal Society (Dorothy Hodgkin Fellowship, DH160102; grant no. RGF\R1\180070).The contractility of cardiac cells is a key parameter that describes the biomechanical characteristics of the beating heart, but functional monitoring of three-dimensional cardiac tissue with single-cell resolution remains a major challenge. Here, we introduce microscopic whispering-gallery-mode lasers into cardiac cells to realize all-optical recording of transient cardiac contraction profiles with cellular resolution. The brilliant emission and high spectral sensitivity of microlasers to local changes in refractive index enable long-term tracking of individual cardiac cells, monitoring of drug administration, accurate measurements of organ-scale contractility in live zebrafish, and robust contractility sensing through hundreds of micrometres of rat heart tissue. Our study reveals changes in sarcomeric protein density as an underlying factor to cardiac contraction. More broadly, the use of novel micro- and nanoscopic lasers as non-invasive, biointegrated optical sensors brings new opportunities to monitor a wide range of physiological parameters with cellular resolution.PostprintPeer reviewe

    Disease-Free Survival after Hepatic Resection in Hepatocellular Carcinoma Patients: A Prediction Approach Using Artificial Neural Network

    Get PDF
    Background: A database for hepatocellular carcinoma (HCC) patients who had received hepatic resection was used to develop prediction models for 1-, 3- and 5-year disease-free survival based on a set of clinical parameters for this patient group. Methods: The three prediction models included an artificial neural network (ANN) model, a logistic regression (LR) model, and a decision tree (DT) model. Data for 427, 354 and 297 HCC patients with histories of 1-, 3- and 5-year disease-free survival after hepatic resection, respectively, were extracted from the HCC patient database. From each of the three groups, 80 % of the cases (342, 283 and 238 cases of 1-, 3- and 5-year disease-free survival, respectively) were selected to provide training data for the prediction models. The remaining 20 % of cases in each group (85, 71 and 59 cases in the three respective groups) were assigned to validation groups for performance comparisons of the three models. Area under receiver operating characteristics curve (AUROC) was used as the performance index for evaluating the three models. Conclusions: The ANN model outperformed the LR and DT models in terms of prediction accuracy. This study demonstrated the feasibility of using ANNs in medical decision support systems for predicting disease-free survival based on clinical databases in HCC patients who have received hepatic resection
    • …
    corecore