81 research outputs found

    Observational properties of massive black hole binary progenitors

    Full text link
    The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ~36Msun and ~29Msun. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (PoWR), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. We provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.Comment: 64 pages, 30 figures, accepted for publication in Astronomy & Astrophysics, v2: typos correcte

    MWC 656 is unlikely to contain a black hole

    Full text link
    Context. MWC 656 was reported as the first known Be star with a black-hole (BH) companion in a 60 d period. The mass of the proposed BH companion is estimated to be between 4 - 7 MSun. This estimate is based on radial velocity (RV) measurements derived from the Fe ii 4583 emission line of the Be star disc and from the He ii 4686 emission line, assumed to be formed in a disc around the putative BH. Aims. Using new high-resolution spectroscopic data, we investigate whether MWC 656 truly contains a BH. Methods. We used the cross-correlation method to calculate the RVs of both the Be star and the He ii 4686 emission line and we derive a new orbital solution. We also performed disentangling to look for the spectral signature of a companion. Results. We derive an orbital period of 59.028 +- 0.011 d and a mass ratio q = M_Heii/M_Be = 0.12 +- 0.03, much lower than the previously reported q = 0.41 +- 0.07. Adopting a mass of the Be star of M_Be = 7.8 +- 2.0MSun, the companion has a mass of 0.94 +- 0.34MSun. For the upper limit of M_Be = 16MSun and q = 0.15, the companion has a mass 2.4MSun. Performing disentangling on mock spectra shows that the spectral signature of a non-degenerate stellar companion with such a low mass cannot be retrieved using our data. Conclusions. Our measurements do not support the presence of a BH companion in MWC 656. The derived upper limit on the mass of the companion rather indicates that it is a neutron star, a white dwarf, or a hot helium star. Far-UV data will help to reject or confirm a hot helium-star companion.Comment: 6 pages, 2 + 6 figures, 3 + 1 tables, accepted for publication in A&

    The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud: spectroscopy, orbital analysis, formation, and evolution

    Full text link
    Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core-collapse. It is not known whether core He-burning WR stars (classical WR, cWR) form predominantly through wind-stripping (w-WR) or binary stripping (b-WR). With spectroscopy of WR binaries so-far largely avoided due to its complexity, our study focuses on the 44 WR binaries / binary candidates of the Large Magellanic Cloud (LMC, metallicity Z~0.5 Zsun), identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at sub-solar metallicity, and constraining the impact of binary interaction in forming them. Spectroscopy is performed using the Potsdam Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement is performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status is interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically-homogeneous evolution. No obvious dichotomy in the locations of apparently-single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently-single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.Comment: accepted to A&A on 10.05.2019; 69 pages (25 main paper + 44 appendix); Corrigendum: Shenar et al. 2020, A&A, 641, 2: An unfortunate typo in the implementation of the "transformed radius" caused errors of up to ~0.5dex in the derived mass-loss rates. This has now been correcte

    Binary-object spectral-synthesis in 3D (BOSS-3D) -- Modelling H-alpha emission in the enigmatic multiple system LB-1

    Full text link
    Context: To quantitatively decode the information stored within an observed spectrum, detailed modelling of the physical state and accurate radiative transfer solution schemes are required. In the analysis of stellar spectra, the numerical model often needs to account for binary companions and 3D structures in the stellar envelopes. The enigmatic binary (or multiple) system LB-1 constitutes a perfect example of such a complex multi-D problem. Aims: To improve our understanding of the LB-1 system, we directly modelled the phase-dependent H-alpha line profiles of this system. To this end, we developed a multi-purpose binary-object spectral-synthesis code in 3D (BOSS-3D). Methods: BOSS-3D calculates synthetic line profiles for a given state of the circumstellar material. The standard pz-geometry commonly used for single stars is extended by defining individual coordinate systems for each involved object and by accounting for the appropriate coordinate transformations. The code is then applied to the LB-1 system, considering two main hypotheses, a binary containing a stripped star and Be star, or a B star and a black hole with a disc. Results: Comparing these two scenarios, neither model can reproduce the detailed phase-dependent shape of the H-alpha line profiles. A satisfactory match with the observations, however, is obtained by invoking a disc around the primary object in addition to the Be-star disc or the black-hole accretion disc. Conclusions: The developed code can be used to model synthetic line profiles for a wide variety of binary systems, ranging from transit spectra of planetary atmospheres, to post-asymptotic giant branch binaries including circumstellar and circumbinary discs and massive-star binaries with stellar winds and disc systems. For the LB-1 system, our modelling provides strong evidence that each object in the system contains a disc-like structure

    Searching for compact objects in the single-lined spectroscopic binaries of the young Galactic cluster NGC 6231

    Full text link
    Recent evolutionary computations predict that a few percent of massive OB stars in binary systems should have a dormant BH companion. Despite several reported X-ray quiet OB+BH systems over the last couple of years, finding them with certainty remains challenging. These have great importance as they can be gravitational wave (GW) source progenitors, and are landmark systems in constraining supernova kick physics. This work aims to characterise the hidden companions to the single-lined spectroscopic binaries (SB1s) in the B star population of the young open Galactic cluster NGC 6231 to find candidate systems for harbouring compact object companions. With the orbital solutions for each SB1 previously constrained, we applied Fourier spectral disentangling to multi-epoch optical VLT/FLAMES spectra of each target to extract a potential signature of a faint companion, and to identify newly disentangled double-lined spectroscopic binaries (SB2s). For targets where the disentangling does not reveal any signature of a stellar companion, we performed atmospheric and evolutionary modelling on the primary to obtain constraints on the unseen companion. Seven newly classified SB2 systems with mass ratios down to near 0.1 were identified. From the remaining targets, for which no faint companion could be extracted from the spectra, four are found to have companion masses in the predicted mass ranges of neutron stars (NSes) and BHes. Two of these have companion masses between 1 and 3.5 M⊙M_{\odot}, making them potential hosts of NSes (or lower mass main sequence stars). The other two are between 2.5 to 8 M⊙M_{\odot} and 1.6 and 26 M⊙M_{\odot}, respectively, and so are identified as candidates for harbouring BH companions. However, unambiguous identification of these systems as X-ray quiet compact object harbouring binaries requires follow up observations.Comment: Submitted to A&

    A Coordinated X-ray and Optical Campaign of the Nearby Massive Binary δ\delta Orionis Aa: II. X-ray Variability

    Get PDF
    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral dataset of the δ\delta Orionis Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ~479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 A˚\AA is confirmed, with maximum amplitude of about +/-15% within a single ~125 ks observation. Periods of 4.76d and 2.04d are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phase=0.0 when the secondary δ\delta Orionis Aa2 is at inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.Comment: 36 pages, 14 Tables, 19 Figures, accepted by ApJ, one of 4 related papers to be published togethe

    A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum

    Get PDF
    We present an overview of four phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system which includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object which can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary, Delta Ori A provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ksec and covering nearly the entire binary orbit. Companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities simultaneous with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectrum. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3−0.5×0.3-0.5\times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of \ion{Fe}{17} and \ion{Ne}{10} are inconsistent with model predictions, which may be an effect of resonance scatteringComment: accepted by ApJ; revised according to ApJ proo

    A massive helium star with a sufficiently strong magnetic field to form a magnetar

    Full text link
    Magnetars are highly magnetized neutron stars; their formation mechanism is unknown. Hot helium-rich stars with spectra dominated by emission lines are known as Wolf-Rayet stars. We observe the binary system HD 45166 using spectropolarimetry, finding that it contains a Wolf-Rayet star with a mass of 2 solar masses and a magnetic field of 43 kilogauss. Stellar evolution calculations indicate that this component will explode as a type Ib or IIb supernova, and the strong magnetic field favors a magnetar remnant. We propose that the magnatized Wolf-Rayet star formed by the merger of two lower mass helium stars.Comment: Published in Science on the 18 August 2023. Radial velocities, spectra, and software available in: https://zenodo.org/record/8042656 ESO press release: www.eso.org/public/news/eso231
    • …
    corecore