5 research outputs found

    Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory

    No full text
    Many studies have implicated the cAMP Response Element Binding (CREB) protein signaling pathway in long-term memory. To identify small molecule enhancers of CREB activation of gene expression, we screened ≈73,000 compounds, each at 7–15 concentrations in a quantitative high-throughput screening (qHTS) format, for activity in cells by assaying CREB mediated β-lactamase reporter gene expression. We identified 1,800 compounds that potentiated CREB mediated gene expression, with potencies as low as 16 nM, comprising 96 structural series. Mechanisms of action were systematically determined, and compounds that affect phosphodiesterase 4, protein kinase A, and cAMP production were identified, as well as compounds that affect CREB signaling via apparently unidentified mechanisms. qHTS folowed by interrogation of pathway targets is an efficient paradigm for lead generation for chemical genomics and drug development

    Elucidation of a structural basis for the inhibitor-driven, p62 (SQSTM1)-dependent intracellular redistribution of cAMP phosphodiesterase-4A4 (PDE4A4)

    No full text
    A survey of PDE4 inhibitors reveals that some compounds trigger intracellular aggregation of PDE4A4 into accretion foci through association with the ubiquitin-binding scaffold protein p62 (SQSTM1). We show that this effect is driven by inhibitor occupancy of the catalytic pocket and stabilization of a “capped state” in which a sequence within the enzyme’s upstream conserved region 2 (UCR2) module folds across the catalytic pocket. Only certain inhibitors cause PDE4A4 foci formation, and the structural features responsible for driving the process are defined. Switching to the UCR2-capped state induces conformational transition in the enzyme’s regulatory N-terminal portion, facilitating protein association events responsible for reversible aggregate assembly. PDE4-selective inhibitors able to trigger relocalization of PDE4A4 into foci can therefore be expected to exert actions on cells that extend beyond simple inhibition of PDE4 catalytic activity and that may arise from reconfiguring the enzyme’s protein association partnerships

    Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target

    No full text

    Immunoregulatory activity of adenosine and its role in human cancer progression

    No full text
    corecore