20 research outputs found

    Tumour-derived and host-derived nitric oxide differentially regulate breast carcinoma metastasis to the lungs

    Get PDF
    To study the role of nitric oxide (NO) in lung metastasis of breast carcinoma, we isolated two cell clones (H and J) from the parental EMT-6 murine breast carcinoma cell line, based on their differential NO production. In vitro, EMT-6 J cells, but not EMT-6H cells, constitutively expressed inducible NO synthase (NOS II) and secreted high levels of NO. IL-1beta increased NO production in both clones, and TNF-alpha had a synergistic effect on IL-1beta-induced NO production, but NO production by EMT-6 J cells was always higher than by EMT-6H cells. Proliferation, survival and adhesion to lung-derived endothelial cells of both clones were similar and were not affected by NO. In vivo, both clones similarly located in the lungs of syngeneic mice 48 h after injection. However, EMT-6H cells were significantly more tumorigenic than EMT-6 J cells as assessed at later time points. Injection of EMT-6 J cells and simultaneous treatment of mice with aminoguanidine (AG), a NOS II inhibitor, significantly increased tumour formation. Injection of EMT-6H and EMT-6 J cells into NOS II-deficient mice resulted in a significant survival increase as compared with wild-type animals. Simultaneous administration of AG increased the death rate of NOS II-deficient mice injected with EMT-6 J cells. These results demonstrate that: (i) NO does not influence the early stages of tumour metastasis to the lungs and (ii) NOS II expression in tumour cells reduces, while NOS II expression in host cells enhances, tumour nodule development. In conclusion, the cellular origin and the local NO production are critical in the metastatic proces

    Role of adhesin release for mucosal colonization by a bacterial pathogen

    Get PDF
    10.1084/jem.20021153Journal of Experimental Medicine1976735-74

    Immunogenicity of Recombinant Classic Swine Fever Virus CD8+ T Lymphocyte Epitope and Porcine Parvovirus VP2 Antigen Coexpressed by Lactobacillus casei in Swine via Oral Vaccination ▿

    No full text
    Classical swine fever virus (CSFV) and porcine parvovirus (PPV) are highly contagious pathogens, resulting in enormous economic losses in pig industries worldwide. Because vaccines play an important role in disease control, researchers are seeking improved vaccines that could induce antiviral immune responses against CSFV and PPV at the mucosal and systemic levels simultaneously. In this study, a genetically engineered Lactobacillus strain coexpressing the CSFV-specific cytotoxic T lymphocyte (CTL) epitope 290 and the VP2 antigen of PPV was developed, and its immunopotentiating capacity as an oral vaccine in pigs was analyzed. The data demonstrated that in the absence of any adjuvant, the recombinant Lactobacillus strain can efficiently stimulate mucosal and systemic CSFV-specific CD8+ CTL responses to protect pigs against CSFV challenge. Moreover, anti-PPV-VP2 serum IgG and mucosal IgA were induced in pigs immunized orally with the recombinant Lactobacillus strain, showing a neutralizing effect on PPV infection. The results suggest that the recombinant Lactobacillus microecological agent may be a valuable component of a strategy for development of a vaccine against CSFV and PPV
    corecore