890 research outputs found

    Probing the Super Star Cluster Environment of NGC 1569 Using FISICA

    Full text link
    We present near-IR JH spectra of the central regions of the dwarf starburst galaxy NGC 1569 using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA). The dust-penetrating properties and available spectral features of the near-IR, combined with the integral field unit (IFU) capability to take spectra of a field, make FISICA an ideal tool for this work. We use the prominent [He I] (1.083\mu m) and Pa\beta (1.282 \mu m) lines to probe the dense star forming regions as well as characterize the general star forming environment around the super star clusters (SSCs) in NGC 1569. We find [He I] coincident with CO clouds to the north and west of the SSCs, which provides the first, conclusive evidence for embedded star clusters here.Comment: 6 pages, 3 figures, accepted for publication in the MNRA

    A Secure Group Communication Architecture for Autonomous Unmanned Aerial Vehicle

    Get PDF
    This paper investigates the application of a secure group communication architecture to a swarm of autonomous unmanned aerial vehicles (UAVs). A multicast secure group communication architecture for the low earth orbit (LEO) satellite environment is evaluated to determine if it can be effectively adapted to a swarm of UAVs and provide secure, scalable, and efficient communications. The performance of the proposed security architecture is evaluated with two other commonly used architectures using a discrete event computer simulation developed using MATLAB. Performance is evaluated in terms of the scalability and efficiency of the group key distribution and management scheme when the swarm size, swarm mobility, multicast group join and departure rates are varied. The metrics include the total keys distributed over the simulation period, the average number of times an individual UAV must rekey, the average bandwidth used to rekey the swarm, and the average percentage of battery consumed by a UAV to rekey over the simulation period. The proposed security architecture can successfully be applied to a swarm of autonomous UAVs using current technology. The proposed architecture is more efficient and scalable than the other tested and commonly used architectures. Over all the tested configurations, the proposed architecture distributes 55.2–94.8% fewer keys, rekeys 59.0–94.9% less often per UAV, uses 55.2–87.9% less bandwidth to rekey, and reduces the battery consumption by 16.9–85.4%

    A Secure Group Communication Architecture for Autonomous Unmanned Aerial Vehicles

    Get PDF
    This paper investigates the application of a secure group communication architecture to a swarm of autonomous unmanned aerial vehicles (UAVs). A multicast secure group communication architecture for the low earth orbit (LEO) satellite environment is evaluated to determine if it can be effectively adapted to a swarm of UAVs and provide secure, scalable, and efficient communications. The performance of the proposed security architecture is evaluated with two other commonly used architectures using a discrete event computer simulation developed using MATLAB. Performance is evaluated in terms of the scalability and efficiency of the group key distribution and management scheme when the swarm size, swarm mobility, multicast group join and departure rates are varied. The metrics include the total keys distributed over the simulation period, the average number of times an individual UAV must rekey, the average bandwidth used to rekey the swarm, and the average percentage of battery consumed by a UAV to rekey over the simulation period. The proposed security architecture can successfully be applied to a swarm of autonomous UAVs using current technology. The proposed architecture is more efficient and scalable than the other tested and commonly used architectures. Over all the tested configurations, the proposed architecture distributes 55.2–94.8% fewer keys, rekeys 59.0–94.9% less often per UAV, uses 55.2–87.9% less bandwidth to rekey, and reduces the battery consumption by 16.9–85.4%

    Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis

    Get PDF
    Obstructive diseases of blood vessels and the lung are characterized by degradation and synthesis of new extracellular matrix (ECM) components. Regulated remodeling of the ECM in diseases such as atherosclerosis and lymphangioleiomyomatosis (LAM), both characterized by excessive accumulation of smooth muscle cells (SMCs), is thought to be controlled in part by cell surface receptors for specific ECM components. Discoidin domain receptors (DDR) 1 and 2 represent a family of tyrosine kinase collagen receptors that are activated by fibrillar collagens. To test the hypothesis that DDR may be involved in ECM remodeling by SMCs in vivo, we analyzed DDR expression by reverse transcriptase-polymerase chain reaction and immunohistochemistry and demonstrate that both DDR1 and DDR2 are up-regulated in nodules of LAM as compared to normal controls, and are expressed in lesions of atherosclerosis. In vitro, retroviral overexpression of DDR1 or DDR2 in human SMCs cultured on polymerized collagen gels leads to a reduction of collagen expression and induces matrix metalloproteinase (MMP) 1 at both mRNA and protein levels, but only DDR2 enhances MMP2 activation. Moreover, DDR2 overexpression increases SMC-mediated collagen and elastin degradation in vitro. Using laser microdissection, we extend our studies to the analysis of SMCs from LAM nodules where we observe higher MMP1 expression and MMP2 activation. Taken together, these data provide evidence for the potential roles of DDR1 and DDR2 in the regulation of collagen turnover mediated by SMCs in obstructive diseases of blood vessels and the lung

    GGD 37: An Extreme Protostellar Outflow

    Get PDF
    We present the first Spitzer-IRS spectral maps of the Herbig-Haro flow GGD 37 detected in lines of [Ne III], [O IV], [Ar III], and [Ne v]. The detection of extended [O IV] (55 eV) and some extended emission in [Ne v] (97 eV) indicates a shock temperature in excess of 100,000 K, in agreement with X-ray observations, and a shock speed in excess of 200 km s(-1). The presence of an extended photoionization or collisional ionization region indicates that GGD 37 is a highly unusual protostellar outflow.Jet Propulsion Laboratory, under NASA 1407NASA 1257184Jet Propulsion Laboratory (JPL) 960803University of Rochester 31419-5714Astronom

    LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons

    Get PDF
    The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. We show here that the serine/threonine kinase LKB1, previously implicated in the establishment of epithelial polarity and control of cell growth, is required for axon specification during neuronal polarization in the mammalian cerebral cortex. LKB1 polarizing activity requires its association with the pseudokinase Stradalpha and phosphorylation by kinases such as PKA and p90RSK, which transduce neurite outgrowth-promoting cues. Once activated, LKB1 phosphorylates and thereby activates SAD-A and SAD-B kinases, which are also required for neuronal polarization in the cerebral cortex. SAD kinases, in turn, phosphorylate effectors such as microtubule-associated proteins that implement polarization. Thus, we provide evidence in vivo and in vitro for a multikinase pathway that links extracellular signals to the intracellular machinery required for axon specification

    A transient enhancement of Mercury's exosphere at extremely high altitudes inferred from pickup ions

    Get PDF
    Mercury has a global dayside exosphere, with measured densities of 10-2 cm-3 at ~1500 km. Here we report on the inferred enhancement of neutral densities (<102 cm-3) at high altitudes (~5300 km) by the MESSENGER spacecraft. Such high-altitude densities cannot be accounted for by the typical exosphere. This event was observed by the Fast-Imaging Plasma Spectrometer (FIPS), which detected heavy ions of planetary origin that were recently ionized, and "picked up" by the solar wind. We estimate that the neutral density required to produce the observed pickup ion fluxes is similar to typical exospheric densities found at ~700 km altitudes. We suggest that this event was most likely caused by a meteroid impact. Understanding meteoroid impacts is critical to understanding the source processes of the exosphere at Mercury, and the use of plasma spectrometers will be crucial for future observations with the Bepi-Colombo mission

    Ion kinetic properties in Mercury's pre-midnight plasma sheet

    Get PDF
    With data from the Fast Imaging Plasma Spectrometer sensor on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, we demonstrate that the average distributions for both solar wind and planetary ions in Mercury’s pre-midnight plasma sheet are well-described by hot Maxwell-Boltzmann distributions. Temperatures and densities of the H+ ranges ~1–10 cm3 and ~5–30 MK, respectively, maintain thermal pressures of ~1 nPa. The dominant planetary ion, Na+ abundances with respect to H+ and exhibit mass-proportional ion temperatures, indicative of a reconnection-dominated heating in the magnetosphere. Conversely, planetary ion species are accelerated to similar average energies greater by a factor of ~1.5 than that of H+ acceleration in an electric potential, consistent with the presence of a strong centrifugal acceleration process in Mercury’s magnetosphere
    • …
    corecore