130 research outputs found

    Tuning the Band Topology of GdSb by Epitaxial Strain

    Full text link
    Rare-earth monopnictide (RE-V) semimetal crystals subjected to hydrostatic pressure have shown interesting trends in magnetoresistance, magnetic ordering, and superconductivity, with theory predicting pressure-induced band inversion. Yet, thus far, there have been no direct experimental reports of interchanged band order in RE-Vs due to strain. This work studies the evolution of band topology in biaxially strained GdSb (001) epitaxial films using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). We find that biaxial strain continuously tunes the electronic structure from topologically trivial to nontrivial, reducing the gap between the hole and the electron bands dispersing along the [001] direction. The conduction and valence band shifts seen in DFT and ARPES measurements are explained by a tight-binding model that accounts for the orbital symmetry of each band. Finally, we discuss the effect of biaxial strain on carrier compensation and magnetic ordering temperature

    Epitaxial growth, magnetoresistance, and electronic band structure of GdSb magnetic semimetal films

    Get PDF
    Motivated by observations of extreme magnetoresistance (XMR) in bulk crystals of rare-earth monopnictide (RE-V) compounds and emerging applications in novel spintronic and plasmonic devices based on thin-film semimetals, we have investigated the electronic band structure and transport behavior of epitaxial GdSb thin films grown on III-V semiconductor surfaces. The Gd3+ ion in GdSb has a high spin S=7/2 and no orbital angular momentum, serving as a model system for studying the effects of antiferromagnetic order and strong exchange coupling on the resulting Fermi surface and magnetotransport properties of RE-Vs. We present a surface and structural characterization study mapping the optimal synthesis window of thin epitaxial GdSb films grown on III-V lattice-matched buffer layers via molecular beam epitaxy. To determine the factors limiting XMR in RE-V thin films and provide a benchmark for band structure predictions of topological phases of RE-Vs, the electronic band structure of GdSb thin films is studied, comparing carrier densities extracted from magnetotransport, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. ARPES shows hole-carrier rich topologically-trivial semi-metallic band structure close to complete electron-hole compensation, with quantum confinement effects in the thin films observed through the presence of quantum well states. DFT predicted Fermi wavevectors are in excellent agreement with values obtained from quantum oscillations observed in magnetic field-dependent resistivity measurements. An electron-rich Hall coefficient is measured despite the higher hole carrier density, attributed to the higher electron Hall mobility. The carrier mobilities are limited by surface and interface scattering, resulting in lower magnetoresistance than that measured for bulk crystals

    Stromal cell inhibition of anti-CD20 antibody mediated killing of B-cell malignancies

    Get PDF
    Introduction: The glycoengineered type II anti-CD20 monoclonal antibody obinutuzumab has been licensed for treatment in follicular non-Hodgkin lymphoma and B-CLL following clinical trials demonstrating superior outcomes to standard of care treatment. However, ultimately many patients still relapse, highlighting the need to understand the mechanisms behind treatment failure to improve patient care. Resistance to chemotherapy is often caused by the ability of malignant B-cells to migrate to the bone marrow and home into the stromal layer. Therefore, this study aimed to investigate whether stromal cells were also able to inhibit type II anti-CD20 antibody mechanisms of action, contributing to resistance to therapy.Methods: A stromal-tumor co-culture was established in vitro between Raji or Daudi B-cell tumor cells and M210B4 stromal cells in 24 well plates.Results: Contact with stromal cells was able to protect tumor cells from obinutuzumab mediated programmed cell death (PCD), antibody dependent cellular phagocytosis and antibody dependent cellular cytotoxicity. Furthermore, such protection required direct contact between stroma and tumor cells. Stromal cells appeared to interfere with obinutuzumab mediated B-cell homotypic adhesion through inhibiting and reversing actin remodelling, potentially as a result of stromal-tumor cell contact leading to downregulation of CD20 on the surface of tumor cells. Further evidence for the potential role of CD20 downregulation comes through the reduction in surface CD20 expression and inhibition of obinutuzumab mediated PCD when tumor cells are treated with Ibrutinib in the presence of stromal cells. The proteomic analysis of tumor cells after contact with stromal cells led to the identification of a number of altered pathways including those involved in cell adhesion and the actin cytoskeleton and remodeling.Discussion: This work demonstrates that contact between tumor cells and stromal cells leads to inhibition of Obinutuzumab effector functions and has important implications for future therapies to improve outcomes to anti-CD20 antibodies. A deeper understanding of how anti-CD20 antibodies interact with stromal cells could prove a useful tool to define better strategies to target the micro-environment and ultimately improve patient outcomes in B-cell malignancies

    Optimizing Clinical Benefits of Bisphosphonates in Cancer Patients with Bone Metastases

    Get PDF
    Malignant bone disease is common in patients with advanced solid tumors or multiple myeloma. Bisphosphonates have been found to be important treatments for bone metastases. A positive benefit-risk ratio for bisphosphonates has been established, and ongoing clinical trials will determine whether individualized therapy is possible

    Conceptualizing Quality in Software Industry

    Get PDF
    This paper investigates the different software quality perceptions from the different stakeholders’ perspectives and presents a critique to previously developed quality models and measurement theory frameworks associated. It emphasizes the rationale beyond the selection of the Goal Question Metric (GQM) as an evaluation method for the development of the software project with the desired quality needs satisfying the software system. Then it ends up with several concluding remarks that pinpoint the main discussion points and offers guidance for further research

    Tuning the band topology of GdSb by epitaxial strain

    Get PDF
    Rare-earth monopnictide (RE-V) semimetal crystals subjected to hydrostatic pressure have shown interesting trends in magnetoresistance, magnetic ordering, and superconductivity, with theory predicting pressure-induced band inversion. Yet, thus far, there have been no direct experimental reports of interchanged band order in RE-Vs due to strain. This work studies the evolution of band topology in biaxially strained GdSb(001) epitaxial films using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). As biaxial strain is tuned from tensile to compressive strain, the gap between the hole and the electron bands dispersed along [001] decreases. The conduction and valence band shifts seen in DFT and ARPES measurements are explained by a tight-binding model that accounts for the orbital symmetry of each band. Finally, we discuss the effect of biaxial strain on carrier compensation and magnetic ordering temperature

    Wnt addiction of genetically defined cancers reversed by PORCN inhibition

    Get PDF
    Enhanced sensitivity to Wnts is an emerging hallmark of a subset of cancers, defined in part by mutations regulating the abundance of their receptors. Whether these mutations identify a clinical opportunity is an important question. Inhibition of Wnt secretion by blocking an essential post-translational modification, palmitoleation, provides a useful therapeutic intervention. We developed a novel potent, orally available PORCN inhibitor, ETC-1922159 (henceforth called ETC-159) that blocks the secretion and activity of all Wnts. ETC-159 is remarkably effective in treating RSPO-translocation bearing colorectal cancer (CRC) patient-derived xenografts. This is the first example of effective targeted therapy for this subset of CRC. Consistent with a central role of Wnt signaling in regulation of gene expression, inhibition of PORCN in RSPO3-translocated cancers causes a marked remodeling of the transcriptome, with loss of cell cycle, stem cell and proliferation genes, and an increase in differentiation markers. Inhibition of Wnt signaling by PORCN inhibition holds promise as differentiation therapy in genetically defined human cancers

    Comparative Study on the Therapeutic Potential of Neurally Differentiated Stem Cells in a Mouse Model of Multiple Sclerosis

    Get PDF
    Background: Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ). Methodology/Principal Findings: The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cellderived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
    corecore