20 research outputs found

    A Runx1-Smad6 Rheostat Controls Runx1 Activity during Embryonic Hematopoiesis▿†

    No full text
    The oncogenic transcription factor Runx1 is required for the specification of definitive hematopoietic stem cells (HSC) in the developing embryo. The activity of this master regulator is tightly controlled during development. The transcription factors that upregulate the expression of Runx1 also upregulate the expression of Smad6, the inhibitory Smad, which controls Runx1 activity by targeting it to the proteasome. Here we show that Runx1, in conjunction with Fli1, Gata2, and Scl, directly regulates the expression of Smad6 in the aorta-gonad-mesonephros (AGM) region in the developing embryo, where HSCs originate. Runx1 regulates Smad6 activity via a novel upstream enhancer, and Runx1 null embryos show reduced Smad6 transcripts in the yolk-sac and c-Kit-positive fetal liver cells. By directly regulating the expression of Smad6, Runx1 sets up a functional rheostat to control its own activity. The perturbation of this rheostat, using a proteasomal inhibitor, results in an increase in Runx1 and Smad6 levels that can be directly attributed to increased Runx1 binding to tissue-specific regulatory elements of these genes. Taken together, we describe a scenario in which a key hematopoietic transcription factor controls its own expression levels by transcriptionally controlling its controller

    A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis

    No full text
    The transcription factor Runx1 is a key regulator of definitive hematopoiesis in the embryo and the adult. Lineage-specific expression of Runx1 involves transcription and post-transcription control through usage of alternative promoters and diverse 3′UTR isoforms, respectively. We identified and mapped microRNA (miR) binding sites on Runx1 3′UTR and show that miR-27a, miR-9, miR-18a, miR-30c, and miR-199a* bind and post-transcriptionally attenuate expression of Runx1. miR-27a impacts on both the shortest (0.15 kb) and longest (3.8 kb) 3′UTRs and, along with additional miRs, might contribute to translation attenuation of Runx1 mRNA in the myeloid cell line 416B. Whereas levels of Runx1 mRNA in 416B and the B cell line 70Z were similar, the protein levels were not. Large amounts of Runx1 protein were found in 70Z cells, whereas only minute amounts of Runx1 protein were made in 416B cells and overexpression of Runx1 in 416B induced terminal differentiation associated with megakaryocytic markers. Induction of megakaryocytic differentiation in K562 cells by 12-o-tetradecanoylphorbol-13-acetate markedly increased miR-27a expression, concomitantly with binding of Runx1 to miR-27a regulatory region. The data indicate that miR-27a plays a regulatory role in megakaryocytic differentiation by attenuating Runx1 expression, and that, during megakaryopoiesis, Runx1 and miR-27a are engaged in a feedback loop involving positive regulation of miR-27a expression by Runx1
    corecore