490 research outputs found

    Constraining Dark Energy through the Stability of Cosmic Structures

    Full text link
    For a general dark-energy equation of state, we estimate the maximum possible radius of massive structures that are not destabilized by the acceleration of the cosmological expansion. A comparison with known stable structures constrains the equation of state. The robustness of the constraint can be enhanced through the accumulation of additional astrophysical data and a better understanding of the dynamics of bound cosmic structures.Comment: 11 pages, 1 figur

    A novel approach to source routing for multi-hop ad hoc networks

    Full text link

    CAC-TCP cross-layer interaction in a HAPS-satellite integrated scenario

    Get PDF
    The integration of a satellite system with a HAPS segment appears very suitable to provide communication services, including Internet access, for a large set of applications. In fact, the-satellite capability to provide wide coverage and broadband access can be enhanced by the use of cost-effective, mobile/portable and low-power consuming user terminals, when HAPS acts as an intermediate repeater. Moreover, also TCP-based applications, which suffer from long latency introduced by the satellite link and in general by errors, can get benefits in terms of end-to-end performance. In this frame, this paper deals with the introduction, on board the HAPS, of an efficient CAC scheme in order to guarantee an optimal utilization of the precious radio resources. In particular, we propose an innovative TCP driven CAC algorithm, which shall take into account not only the QoS requirements, but also TCP statistics obtained through a proxy installed on the HAPS. Results show that the overall system performance in terms of both average throughput and blocking probability is significantly improved

    A TCP Driven CAC scheme: efficient resource utilization in a leaky HAP-satellite integrated scenario

    Get PDF
    An integrated high altitude platform (HAP)-satellite communication system appears to be very suitable for a large set of scenarios including emergency situations, exceptional events, etc. In fact, the satellite capability to provide a broadband and ubiquitous access can be enhanced by the deployment of HAP that allows the use of low-power consuming, cost-efficient, and portable terminals. To obtain an optimum utilization of radio resource, without renouncing to QoS satisfaction, a suitable call admission control scheme must be implemented. Nevertheless, transmission control protocol (TCP) behavior, mainly affected by the high latency and shadowing events, can impact call admission control (CAC) performance. Therefore, it would be desirable that the CAC scheme takes into account also the TCP congestion window real evolution. We present an innovative CAC scheme that uses TCP statistics as one of its inputs and is able to manage different classes of users. Results show that CAC performance is significantly improved by introducing TCP statistics about network congestion as an input parameter

    Demonstration of magnetic field tomography with starlight polarization towards a diffuse sightline of the ISM

    Get PDF
    The availability of large datasets with stellar distance and polarization information will enable a tomographic reconstruction of the (plane-of-the-sky-projected) interstellar magnetic field in the near future. We demonstrate the feasibility of such a decomposition within a small region of the diffuse ISM. We combine measurements of starlight (R-band) linear polarization obtained using the RoboPol polarimeter with stellar distances from the second Gaia data release. The stellar sample is brighter than 17 mag in the R band and reaches out to several kpc from the Sun. HI emission spectra reveal the existence of two distinct clouds along the line of sight. We decompose the line-of-sight-integrated stellar polarizations to obtain the mean polarization properties of the two clouds. The two clouds exhibit significant differences in terms of column density and polarization properties. Their mean plane-of-the-sky magnetic field orientation differs by 60 degrees. We show how our tomographic decomposition can be used to constrain our estimates of the polarizing efficiency of the clouds as well as the frequency dependence of the polarization angle of polarized dust emission. We also demonstrate a new method to constrain cloud distances based on this decomposition. Our results represent a preview of the wealth of information that can be obtained from a tomographic map of the ISM magnetic field.Comment: 25 pages, 14 figures, published in ApJ, data appear in journa

    Scale invariant jets: from blazars to microquasars

    Get PDF
    Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many cases observations support such hypotheses for microquasars and Seyfert galaxies, little is known on whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multiwavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broad-band radio luminosity and black hole mass, which extends over ∼\sim 9 orders of magnitude down to microquasars scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor, and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens-of-solar mass black holes, immediately applicable to cases as those recently observed by LIGO.Comment: 13 pages, 4 figures, accepted for publication in AP

    Local alignments of parsec-scale AGN radiojets

    Full text link
    Context.Coherence in the characteristics of neighboring sources in 2D and 3D space may suggest the existence of large-scale cosmic structures, which are useful for cosmological studies. Numerous works have been conducted to detect such features in global scalesas well as in confined areas of the sky. However, results are often contradictory and their interpretation remains controversial. Aims.We investigate the potential alignment of parsec-scale radio jets in localized regions of the coordinates-redshift space. Methods.We use data from the Astrogeo VLBI FITS image database to deduce jet directions of radio sources. We perform the search for statistical alignments between nearby sources and explore the impact of instrumental biases. Results.We unveil four regions for which the alignment between jet directions deviates from randomness at a significance level of more than 5 sigma and is unlikely due to instrumental systematics. Intriguingly, their locations coincide with other known large-scale cosmic structures and/or regions of alignments. Conclusions.If the alignments found are the result of physical processes, the discovered regions may designate some of the largest structures known to date.Comment: 11 pages, 9 figure
    • …
    corecore