98 research outputs found

    A Tentative Description of Z_c,b States in Terms of Metastable Feshbach Resonances

    Full text link
    We attempt a description of the recently discovered Z_{c,b} states in terms of Feshbach resonances arising from the interaction between the `closed' subspace of hadrocharmonium levels and the `open' one of open-charm/beauty thresholds. We show how the neutrality of the X(3872) might be understood in this scheme and provide a preliminary explanation of the pattern of the measured total widths of X,Z_{c,b}.Comment: To appear in the proceedings of The 6th International Workshop on Charm Physics (CHARM 2013

    Doubly Charmed Tetraquarks in B_c and Xi_bc Decays

    Full text link
    The phenomenology of the so-called X, Y and Z hadronic resonances is hard to reconcile with standard charmonium or bottomonium interpretations. It has been suggested that some of these new hadrons can possibly be described as tightly bound tetraquark states and/or as loosely bound two-meson molecules. In the present paper we focus on the hypothetical existence of flavored, doubly charmed, tetraquarks. Such states might also carry double electric charge, and in this case, if discovered, they could univocally be interpreted in terms of compact tetraquarks. Flavored tetraquarks are also amenable to lattice studies as their interpolating operators do not overlap with ordinary meson ones. We show that doubly charmed tetraquarks could significantly be produced at LHC from B_c or Xi_bc heavy baryons.Comment: 12 pages, 8 figures. Comments and references added. Version to appear in Phys.Rev.

    Flavored tetraquark spectroscopy

    Get PDF
    The recent confirmation of the charged charmonium like resonance Z(4430) by the LHCb experiment strongly suggests the existence of QCD multi quark bound states. Some preliminary results about hypothetical flavored tetraquark mesons are reported. Such states are particularly amenable to Lattice QCD studies as their interpolating operators do not overlap with those of ordinary hidden-charm mesons

    Frustration driven structural distortion in VOMoO4

    Full text link
    Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), magnetization measurements and electronic structure calculations in VOMoO4 are presented. It is found that VOMoO4 is a frustrated two-dimensional antiferromagnet on a square lattice with competing exchange interactions along the side J1 and the diagonal J2 of the square. From magnetization measurements J1+J2 is estimated around 155 K, in satisfactory agreement with the values derived from electronic structure calculations. Around 100 K a structural distortion, possibly driven by the frustration, is evidenced. This distortion induces significant modifications in the NMR and EPR spectra which can be accounted for by valence fluctuations. The analysis of the spectra suggests that the size of the domains where the lattice is distorted progressively grows as the temperature approaches the transition to the magnetic ground state at Tc=42 K

    K^0-\bar{K}^0 mixing in the Standard Model from Nf=2+1+1 Twisted Mass Lattice QCD

    Full text link
    We present preliminary results at {\beta} = 1.95 (a = 0.077 fm) on the first unquenched N_f=2+1+1 lattice computation of the B_K parameter which controls the neutral kaon oscillations in the Standard Model. Using N_f=2+1+1 maximally twisted sea quarks and Osterwalder-Seiler valence quarks we achieve O(a) improvement and a continuum-like renormalization pattern for the four-fermion operator. Our results are extrapolated/interpolated to the physical light/strange quark mass but not yet to the continuum limit. The computation of the relevant renormalization constants is performed non perturbatively in the RI'-MOM scheme using dedicated simulations with N_f=4 degenerate sea quark flavours produced by the ETM collaboration. We get B_K^{RGI} (a = 0.077) = 0.747(18), which when compared to our previous unquenched N_f=2 determination and most of the existing results, suggests a rather weak B_K^{RGI} dependence on the number of dynamical flavours. We are at the moment analysing lattice data at two additional {\beta} values which will allow us to perform an extrapolation to the continuum limit.Comment: 7 pages, 8 figures, Proceedings of Lattice 2011, XXIX International Symposium on Lattice Field Theory, Squaw Valley, Lake Tahoe, Californi

    Flavored tetraquark spectroscopy

    Get PDF
    The recent confirmation of the charged charmonium like resonance Z(4430) by the LHCb experiment strongly suggests the existence of QCD multi quarks bound states. Some preliminary results about hypothetical flavored tetraquark mesons are reported. Such states are particularly amenable to Lattice QCD studies as their interpolating operators do not overlap with those of ordinary hidden-charm mesons.Comment: 7 pages, 7 figures, presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014), June 23-28 2014, New York, US

    Twisted mass fermions: neutral pion masses from disconnected contributions

    Get PDF
    Twisted mass fermions allow light quarks to be explored but with the consequence that there are mass splittings, such as between the neutral and charged pion. Using a direct calculation of the connected neutral pion correlator and stochastic methods to evaluate the disconnected correlations, we determine the neutral pion mass. We explore the dependence on lattice spacing and quark mass in quenched QCD. For dynamical QCD, we determine the sign of the splitting which is linked, via chiral PT, to the nature of the phase transition at small quark mass.Comment: 6 pages, poster (hadron spectrum and quark masses) at Lattice 2005,Dublin, July 25-3

    Neurite Orientation Dispersion and Density Imaging Color Maps to Characterize Brain Diffusion in Neurologic Disorders

    Get PDF
    Purpose: Neurite orientation dispersion and density imaging (NODDI) has recently been developed to overcome diffusion technique limitations in modeling biological systems. This manuscript reports a preliminary investigation into the use of a single color-coded map to represent NODDI-derived information. Materials and methods: An optimized diffusion-weighted imaging protocol was acquired in several clinical neurological contexts including demyelinating disease, neoplastic process, stroke, and toxic/metabolic disease. The NODDI model was fitted to the diffusion datasets. NODDI is based on a three-compartment diffusion model and provides maps that quantify the contributions to the total diffusion signal in each voxel. The NODDI compartment maps were combined into a single 4-dimensional volume visualized as RGB image (red for anisotropic Gaussian diffusion, green for non-Gaussian anisotropic diffusion, and blue for isotropic Gaussian diffusion), in which the relative contributions of the different microstructural compartments can be easily appreciated. Results: The NODDI color maps better describe the heterogeneity of neoplastic as well inflammatory lesions by identifying different tissue components within areas apparently homogeneous on conventional imaging. Moreover, NODDI color maps seem to be useful for identifying vasogenic edema differently from tumor-infiltrated edema. In multiple sclerosis, the NODDI color maps enable a visual assessment of the underlying microstructural changes, possibly highlighting an increased inflammatory component, within lesions and potentially in normal-appearing white matter. Conclusion: The NODDI color maps could make this technique valuable in a clinical setting, providing comprehensive and accessible information in normal and pathological brain tissues in different neurological pathologies

    Dynamic Critical Behavior of an Extended Reptation Dynamics for Self-Avoiding Walks

    Full text link
    We consider lattice self-avoiding walks and discuss the dynamic critical behavior of two dynamics that use local and bilocal moves and generalize the usual reptation dynamics. We determine the integrated and exponential autocorrelation times for several observables, perform a dynamic finite-size scaling study of the autocorrelation functions, and compute the associated dynamic critical exponents zz. For the variables that describe the size of the walks, in the absence of interactions we find z≈2.2z \approx 2.2 in two dimensions and z≈2.1z\approx 2.1 in three dimensions. At the θ\theta-point in two dimensions we have z≈2.3z\approx 2.3.Comment: laTeX2e, 32 pages, 11 eps figure
    • …
    corecore