43 research outputs found

    Effect of trabecular bone loss on cortical strain rate during impact in an in vitro model of avian femur

    Get PDF
    BACKGROUND: Osteoporotic hip fractures occur due to loss of cortical and trabecular bone mass and consequent degradation in whole bone strength. The direct cause of most fractures is a fall, and hence, characterizing the mechanical behavior of a whole osteopenic bone under impact is important. However, very little is known about the mechanical interactions between cortical and trabecular bone during impact, and it is specifically unclear to what extent epiphyseal trabecular bone contributes to impact resistance of whole bones. We hypothesized that trabecular bone serves as a structural support to the cortex during impact, and hence, loss of a critical mass of trabecular bone reduces internal constraining of the cortex, and, thereby, decreases the impact tolerance of the whole bone. METHODS: To test this hypothesis, we conducted cortical strain rate measurements in adult chicken's proximal femora subjected to a Charpy impact test, after removing different trabecular bone core masses to simulate different osteopenic severities. RESULTS: We found that removal of core trabecular bone decreased by ~10-fold the cortical strain rate at the side opposite to impact (p < 0.01), i.e. from 359,815 ± 1799 μm/m per second (mean ± standard error) for an intact (control) specimen down to 35,997 ± 180 μm/m per second where 67% of the total trabecular bone mass (~0.7 grams in adult chicken) were removed. After normalizing the strain rate by the initial weight of bone specimens, a sigmoid relation emerged between normalized strain rate and removed mass of trabecular bone, showing very little effect on the cortex strain rate if below 10% of the trabecular mass is removed, but most of the effect was already apparent for less than 30% trabecular bone loss. An analytical model of the experiments supported this behavior. CONCLUSION: We conclude that in our in vitro avian model, loss of over 10% of core trabecular bone substantially altered the deformation response of whole bone to impact, which supports the above hypothesis and indicates that integrity of trabecular bone is critical for resisting impact loads

    Vitamin D inadequacy in Belgian postmenopausal osteoporotic women

    Get PDF
    BACKGROUND: Inadequate serum vitamin D [25(OH)D] concentrations are associated with secondary hyperparathyroidism, increased bone turnover and bone loss, which increase fracture risk. The objective of this study is to assess the prevalence of inadequate serum 25(OH)D concentrations in postmenopausal Belgian women. Opinions with regard to the definition of vitamin D deficiency and adequate vitamin D status vary widely and there are no clear international agreements on what constitute adequate concentrations of vitamin D. METHODS: Assessment of 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone was performed in 1195 Belgian postmenopausal women aged over 50 years. Main analysis has been performed in the whole study population and according to the previous use of vitamin D and calcium supplements. Four cut-offs of 25(OH)D inadequacy were fixed : < 80 nmol/L, <75 nmol/L, < 50 nmol/L and < 30 nmol/L. RESULTS: Mean (SD) age of the patients was 76.9 (7.5) years, body mass index was 25.7 (4.5) kg/m(2). Concentrations of 25(OH)D were 52.5 (21.4) nmol/L. In the whole study population, the prevalence of 25(OH)D inadequacy was 91.3 %, 87.5 %, 43.1 % and 15.9% when considering cut-offs of 80, 75, 50 and 30 nmol/L, respectively. Women who used vitamin D supplements, alone or combined with calcium supplements, had higher concentrations of 25(OH)D than non-users. Significant inverse correlations were found between age/serum PTH and serum 25(OH)D (r = -0.23/r = -0.31) and also between age/serum PTH and femoral neck BMD (r = -0.29/r = -0.15). There is a significant positive relation between age and PTH (r = 0.16), serum 25(OH)D and femoral neck BMD (r = 0.07). (P < 0.05) Vitamin D concentrations varied with the season of sampling but did not reach statistical significance (P = 0.09). CONCLUSION: This study points out a high prevalence of vitamin D inadequacy in Belgian postmenopausal osteoporotic women, even among subjects receiving vitamin D supplements

    Coupled librational and orbital motions of a large-scale spacecraft

    Get PDF
    Mechanical characteristics of coupled librational and orbital motions of a large-scale spacecraft are investigated. A rigid body of an arbitrary shape is considered as a mathematical model, and a set of nonlinear equations of motion about the librational and orbital motions is formulated. Through Lindstedt\u27s perturbation method, approximated analytical solutions are obtained. From the analytical solutions, the conditions of instability are clarified, and the characteristics of the orbital motion are shown. The total mechanical energy has the minimum value when the librational and orbital motions coincide with the periodic solution. The formula for the total mechanical energy proves that the periodic solution is the minimum energy solution. From the nonlinear numerical investigations, it is shown that the results stated above are valid even without any approximations. The results of this study provide us the fundamental understandings of the dynamics of large-scale spacecraft in space

    Deformations and Vibrations of a Rotating Circular Membrane under Distributed Loads

    No full text
    corecore