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Mechanical characteristics of coupled librational and orbital motions of a large-scale spacecraft are investigated. A
rigid body of an arbitrary shape is considered as a mathematical model, and a set of nonlinear equations of motion about
the librational and orbital motions is formulated. Through Lindstedt’s perturbation method, approximated analytical
solutions are obtained. From the analytical solutions, the conditions of instability are clarified, and the characteristics
of the orbital motion are shown. The total mechanical energy has the minimum value when the librational and orbital
motions coincide with the periodic solution. The formula for the total mechanical energy proves that the periodic solution
is the minimum energy solution. From the nonlinear numerical investigations, it is shown that the results stated above
are valid even without any approximations. The results of this study provide us the fundamental understandings of the
dynamics of large-scale spacecraft in space.
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Nomenclature

a : semimajor axis
d : dimension factor of spacecraft, Eq. (17)
e : orbital eccentricity
I : moment of inertia of spacecraft
k : shape factor of spacecraft, Eq. (18)

M : mass of spacecraft
n0 : orbital mean motion
r : orbital radius

rperi : orbital radius at perigee
xI, yI, zI : inertial coordinate

xo, yo, zo : orbital coordinate
xB, yB, zB : body fixed coordinate

µ : Earth gravitational constant
ν : true anomaly
ψ : pitch angle

Subscripts
c : coupled
d : decoupled
i : initial conditions
p : periodic solutions

1. Introduction

The dimensions of large-scale spacecraft, such as solar-
power satellites, tethered systems, etc., are not small enough
to be negligible compared to the dimensions of their orbits.
In such situations, the effects of coupling between librational
and orbital motions are not negligible. In previous studies
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including coupling, orbital motions are mainly focused,1–4)

and the orbit controls through the attitude motions of space-
craft are also investigated.5–8) In these studies, however, the
stability of librational motion is not considered.

The orbits of actual spacecraft cannot coincide exactly
with complete circular orbits, even if their reference orbits
are circular. A tethered system is intentionally planned to
have an elliptic orbit of a large eccentricity.9) The attitude
motion is always subjected to disturbances from the orbital
motion, and the control actuators are limited in terms of ca-
pacity and methods, especially in the case of flexible large-
scale spacecraft. Therefore, sometimes the attitude motion
cannot be controlled to stay along the gravity-gradient di-
rection, and some motion is inevitable. In previous papers,
periodic solutions are focused,3, 10–12) and the stability of at-
titude motion is investigated through stability analysis of the
periodic solution. Active controls toward the periodic solu-
tion are also studied.13) However, mechanical characteristics
of the periodic solution have not been clarified.

In this study, we focus on the stability of the free libra-
tional motion and the characteristics of coupled motion over
a long period of operation. The equations of motion includ-
ing coupling become highly nonlinear. Therefore, at first,
approximated analytical solutions are found through Lind-
stedt’s perturbation method.14) From the analytical solu-
tions, the stability and mechanical characteristics of motion
are investigated. Next, the results obtained from the analyti-
cal solutions are examined using nonlinear numerical meth-
ods. Since coupling is considered, we can treat the whole
system as a conservative one, and it is possible to focus on
the total mechanical energy. In the investigations, the orbital
eccentricity is simultaneously considered to clarify the me-
chanical meanings of the periodic solution in elliptic orbits.
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2. Formulation

2.1. System configurations and assumptions
A spacecraft in an orbit is approximated as a rigid body.

The model and coordinates are shown in Fig. 1. Only in-
plane motion is focused, and only gravitational force is con-
sidered. Active control of the librational and orbital motions
is not considered.
2.2. Equations of motion

Equations of motion are obtained using the Lagrange for-
mulation. The position vector xI of a small particle with its
mass of dm in the inertial coordinate is given as follows:

xI = r

(
cos ν

sin ν

)
+ xB

(
sin(ν + ψ)

− cos(ν + ψ)

)
+ yB

(
cos(ν + ψ)

sin(ν + ψ)

)

(1)
The kinetic energy K is given as follows:

K =
∫

1

2
‖ẋI‖2dm

=
∫ (

1

2
(x2

B + y2
B)(ν̇ + ψ̇)2 + 1

2
(r2ν̇2 + ṙ2)

)
dm

= 1

2
Iz(ν̇ + ψ̇)2 + 1

2
M(r2ν̇2 + ṙ2) (2)

where, 


Ix =
∫
(y2

B + z2
B)dm

Iy =
∫
(z2

B + x2
B)dm

Iz =
∫
(x2

B + y2
B)dm

(3)

The potential energy U is given as follows:

U = −
∫

µ

‖xI‖dm

= −
∫

µ√
x2

B + y2
B + r2 + 2r(xB sinψ + yB cosψ)

dm

Fig. 1. The coordinates of the system.

∼= −
∫ (

µ

r
+ µ(x2

B + y2
B − 3(x2

B − y2
B) cos 2ψ)

4r3

)
dm

= −µM

r
− µ(Iz + 3(Ix − Iy) cos 2ψ)

4r3
(4)

The Lagrangian L is obtained as

L = K − U (5)

and the Lagrange equation of motion is obtained:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (6)

Finally, the equations of the librational motion of the space-
craft ψ , the orbital angular velocity ν̇, and the orbital radius
r are obtained as follows:

ψ̈ = −ν̈ − 3µ

r3

Ix − Iy

Iz
sinψ cosψ (7)

ν̈ = −2Mrṙ ν̇ + Izψ̈

Iz + Mr2
(8)

r̈ = − µ

r2
+ r ν̇2 − 3µ(Iz + 3(Ix − Iy) cos 2ψ)

4Mr4
(9)

3. Analytical Investigation

3.1. Approximated analytical solutions
In this section, a set of approximated analytical solutions

is obtained through Lindstedt’s perturbation method. The
orbital eccentricity e and the dimension factor d (Eq. (17))
are considered as small parameters of first and second order,
respectively. In the following formulation, e and d are sub-
stituted by a small parameter ε, and terms over second order
are neglected. {

e = O(ε)

d = O(ε2)
(10)

The decoupled orbit is approximated as a function of time as
follows:15)

ν̇d = n0

(
1 + 2e cos n0t + 5

2
e2 cos 2n0t

)
(11)

rd = a

(
1 + 1

2
e2 − e cos n0t − 1

2
e2 cos 2n0t

)
(12)

where, n0 and a satisfy the following equation:

µ = n2
0a3 (13)

The approximated analytical solutions are assumed as fol-
lows:

ψ = ψ0 + ε · ψ1 + ε2 · ψ2 (14)

ν̇c = ν̇d + ε2ν̇2 (15)

rc = rd + ε2r2 (16)

We define d and k as follows:
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d = Iz

Ma2
(17)

k2 = 3
Ix − Iy

Iz
(0 ≤ k2 ≤ 3) (18)

The following approximations are made.{
sinψ cosψ ≈ ψ

cos 2ψ ≈ 1 − 2ψ2
(19)

A new independent variable τ = nt is introduced, where n
is defined as follows:

n = n0 + ε · n1 + ε2 · n2 (20)

By the definitions and assumptions cited above, the follow-
ing set of equations is obtained through the approximations.
(In the equations, the prime denotes the differentiation by τ .)

ψ ′′
0 + k2ψ0 = 0 (21)

ψ ′′
1 + k2ψ1 = −3ek2 cos n0t · ψ0 − 2n1

n0
ψ ′′

0 + 2e sin n0t (22)

ν̈2 = −2n0

a
ṙ2 − dψ̈0 (23)

r̈2 = −3

4
adn2

0(1 + k2 − 2k2ψ2
0 )+ 3n2

0r2 + 2an0ν̇2 (24)

ψ ′′
2 + k2ψ2 = −

(
n2

1

n2
0

+ 2
n2

n0

)
ψ ′′

0 − 3ek2 cos n0t · ψ1 − 2n1

n0
ψ ′′

1

+ 5e2 sin 2n0t − 1

n2
0

ν̈2 +
(

−3

2
e2 − 9

2
e2 cos 2n0t + 3

a
r2

)
k2ψ0 (25)

These equations provide the solutions recursively as follows:

ψ0 = A cos(knt + θ1) (26)

ψ1 = 2e

k2 − 1
sin(n0t)+ 3k2e

−4k + 2
A cos(−n0t + knt + θ1)+ 3k2e

4k + 2
A cos(n0t + knt + θ1) (27)

ν̇2 = n0

(
3

8
d(1 + (1 − A2)k2)+ 3B1 + 2B2 cos(n0t + θ2)

+ dk(k2 + 3)

k2 − 1
A sin(knt + θ1)+ 3dk2

2(4k2 − 1)
A2 cos(2knt + 2θ1)

)
(28)

r2 = a

(
−2B1 − B2 cos(n0t + θ2)− 2dk

k2 − 1
A sin(knt + θ1)− 3dk2

4(4k2 − 1)
A2 cos(2knt + 2θ1)

)
(29)

ψ2 = 9e2k2(k − 1)

32k − 16
A cos(2n0t − knt − θ1)+ 9e2k2(k + 1)

32k + 16
A cos(2n0t + knt + θ1)

+ e2(2k2 − 5)

(k2 − 4)(k2 − 1)
sin(2n0t)+ 3dk3

(4k2 − 1)(k2 − 1)
A2 sin(2knt + 2θ1)

+ 9dk2

64(4k2 − 1)
A3 cos(3knt + 3θ1)+ 2B2

k2 − 1
sin(n0t + θ2)

− 3B2k2

4k − 2
A cos(knt − n0t + θ1 − θ2)+ 3B2k2

4k + 2
A cos(knt + n0t + θ1 + θ2) (30)

n1 = 0 (31)

n2 = n0

(
k2 + 3

2(k2 − 1)
d + 9k2

16(4k2 − 1)
A2d + 3(k2 − 1)

4(4k2 − 1)
e2 + 3B1

)
(32)

A and θ1 are the initial conditions determined by librational motion, and B1, B2 and θ2 are those determined by orbital motion,
where Bi = O(ε2). The analytical solution is obtained by substituting Eqs. (26)–(32) into Eqs. (14)–(16) and (20). To focus
on the effects of the coupling, Bi is determined so that the coupled orbit has the same average orbital energy and orbital
angular momentum as a Keplerian orbit. As a result, we obtain B1 = 3/8(1 + (1 − A2)k2)d and B2 as an arbitrary value. B2

is denoted as B in the following. We can assume θ2 = 0, because θ2 affects only the initial argument of perigee. Finally, we
obtain the following set of approximated analytical solutions (33)–(36).
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ψ = A cos(knt + θ)+ 2(e + B)

k2 − 1
sin(n0t)+ e2(2k2 − 5)

(k2 − 4)(k2 − 1)
sin(2n0t)

+ 3k2(e + B)

−4k + 2
A cos(−n0t + knt + θ)+ 3k2(e + B)

4k + 2
A cos(n0t + knt + θ)

+ 9e2k2(k − 1)

−16 + 32k
A cos(2n0t − knt − θ)+ 9e2k2(k + 1)

16 + 32k
A cos(2n0t + knt + θ)

+ 3dk3

(4k2 − 1)(k2 − 1)
A2 sin(2knt + 2θ)+ 9dk2

64(4k2 − 1)
A3 cos(3knt + 3θ) (33)

ν̇c = ν̇d + n0

(
3

2
d(1 + (1 − A2)k2)+ 2B cos(n0t)

+ dk(k2 + 3)

k2 − 1
A sin(knt + θ)+ 3dk2

2(4k2 − 1)
A2 cos(2knt + 2θ)

)
(34)

rc = rd + a

(
−3

4
d(1 + (1 − A2)k2)− B cos(n0t)

− 2dk

k2 − 1
A sin(knt + θ)− 3dk2

4(4k2 − 1)
A2 cos(2knt + 2θ)

)
(35)

where,

n = n0

(
1 + 9k4 + 4k2 + 3

8(k2 − 1)
d − 9k2(8k2 − 3)

16(4k2 − 1)
A2d + 3(k2 − 1)

4(4k2 − 1)
e2

)
(36)

Fig. 2. Analytical and numerical solutions: a) pitch motion, b) orbital an-
gular velocity, c) orbital radius.

When the coupling effects are not included, that is, d = 0
and B = 0, solutions (33) and (36) coincide exactly with
Beletskii’s solution.3) To evaluate the validity of analyti-
cal solutions (33)–(36), a nonlinear numerical solution of

the equations of motion (7)–(9) is also obtained for rperi =
6678 [km], e = 0.02, d = 1.0 × 10−4, and k2 = 3. Figure 2
shows the comparison between the analytical and numerical
solutions. Figure 2a shows librational motion, and Figs. 2b
and c show the difference of the orbital motion from the Kep-
lerian orbit. In all figures, good correspondence is found,
which shows the validity of the analytical solutions. From
the process mentioned above, analytical solutions have been
obtained for a spacecraft of an arbitrary shape and arbitrary
dimension in an orbit of arbitrary eccentricity, as far as the
approximation is valid.
3.2. Discussions of analytical solution set

In Eqs. (33)–(35), the terms concerning d become unsta-
ble only when k2 = 1 and k2 = 1/4. These conditions are
the same as those when the terms concerning e become un-
stable.3) The orbital angular velocity is faster than that of the
Keplerian orbit, and the difference is 3/2·d(1+(1−A2)k2)n0

on average. The orbital radius is smaller, and the difference
is 3/4 · d(1 + (1 − A2)k2)a. The shift of the orbital angular
velocity results in the secular movement of the argument of
perigee.

Because the effects of coupling are included, the whole
system is conservative. The total mechanical energy ET is
obtained as a constant value as follows:

ET = K + U

= −1

2
Ma2n2

0 − 1

4
d(k2 − 1)Ma2n2

0 + 1

2
d A2k2 Ma2n2

0

(37)

From Eq. (37), we can find that the total mechanical energy
has the minimum value when A = 0. When A = 0, any per-
turbation on the attitude motion always leads the system to
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have larger total mechanical energy. We obtain the following
solution set for A = 0:

ψ = 2(e + B)

k2 − 1
sin(n0t)+ e2(2k2 − 5)

(k2 − 4)(k2 − 1)
sin(2n0t)

(38)

ν̇c = ν̇d + n0

(
2B cos n0t + 3

2
d(1 + k2)

)
(39)

rc = rd + a

(
−B cos n0t − 3

4
d(1 + k2)

)
(40)

In the solutions, only the constant and oscillation terms
appear, which have the same period as the orbital period.
Therefore, the solution set when A = 0 is a periodic solu-
tion with one orbital period. It is concluded that the total
mechanical energy has the minimum value when the motion
of the system coincides with the periodic solution.

4. Nonlinear Numerical Investigation

4.1. Stability of motion
In this section, nonlinear numerical investigations are car-

ried out to evaluate the validity of the results obtained by the
analytical investigations. Especially, we focus on situations
where the approximations of d and e (Eq. (10)) are invalid
and the nonlinearity must be included.

In previous papers, which do not include the coupling ef-
fects, it is known that librational motion is stable if a sta-
ble periodic solution exists.3, 10, 11) It may be reasonable to
consider that, even if the coupling effects are included, the
stability of the motion is investigated through analyzing the
existence of the stable periodic solution. In this study, the
shooting method16) is applied to investigate the periodic so-
lution and its stability. In the numerical analyses, the follow-
ing parameters are used:

rperi = 6678 [km], e = 0.2, M = 1000 [kg] (41)

Ix = Iz = 6.97 × 1011–14 [kg · m2], Iy = 0 [kg · m2]
(42)

and the initial orbital parameters are given the same as that
of the Keplerian orbit at the perigee as follows:

ri = rperi, ṙi = 0, νi = 0, ν̇i =
√
(1 + e)µ

r3
i

(43)

The values of Ix , Iy , and Iz give k2 = 3, and d = 1.0 ×
10−5–1.0 × 10−2, and they correspond to a tethered system
with a length of 52.8–1670 [km], which consists of two iden-
tical masses. In the analyses, the periodic solutions, which
have the same period as that of the Keplerian orbit, are nu-
merically obtained. The results show that stable periodic so-
lutions are obtained in all cases. This means that the effects
of coupling do not affect stability even without any approxi-
mations. Figure 3 shows the motion of the periodic solution
when d = 3.58 × 10−5, which corresponds to a tethered
system with a length of 100 [km]. Figures 3b and c show the
difference between the coupled orbital motion and Keplerian

 

Fig. 3. Periodic solution: a) pitch motion, b) orbital angular velocity, c)
orbital radius.

orbit.
4.2. Dynamic behavior

To investigate the dynamic behavior, numerical simula-
tions for 500 orbital revolutions are carried out using the val-
ues shown in Eq. (41), d = 3.58×10−5 and k2 = 3. The ini-
tial librational motion is given as ψi = 0 and ψ̇i = 0, which
does not coincide with that of the periodic solution, and ini-
tial orbital conditions are given the same as Eq. (43). Figure
4a is the time-history of ψ during the initial 100 revolutions.
Figure 4b shows Poincaré maps of ψ–ψ̇ and r–ν̇ during 500
revolutions. In this study, Poincaré maps are made by sam-
pling the values of states when the orbital radius becomes lo-
cally minimum at every revolution. The time interval is not
constant because the orbit does not coincide with the Kep-
lerian orbit. In the Poincaré maps, all points are on closed
curves, which means the motion is quasi-periodic and sta-
ble. The change of the orbit is shown in Fig. 5. In the figure,
only the beginning and 500th orbits are depicted. The orbit
continues to have the same semimajor axis and eccentric-
ity on average, and the argument of perigee moves secularly
1.47 [mrad] per one revolution, which takes about 376 days
to revolve once around the earth.
4.3. Mechanical meanings of periodic solution

To investigate the meanings of the periodic solution, sev-
eral numerical simulations have been carried out using d =
3.58×10−5 and k2 = 3. In the simulations, several values of
the initial pitch rate ψ̇0 are given, and the initial orbital pa-
rameters are determined so that the total mechanical energy
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Fig. 4. Dynamic behavior: a) pitch motion, b) Poincaré maps.

 

 

Fig. 5. Movement of argument of perigee.

ET and total angular momentum MT have the same values as
when ψ̇i = 0, rperi = 6678 [km], and e = 0.2 at the perigee,
where MT is defined as follows:

MT = Mr2ν̇ + Iz(ψ̇ + ν̇) (44)

The mechanical energy about the attitude motion of the
spacecraft Ea is defined as follows:

Ea = 1

2
Iz(ν̇ + ψ̇)2 − µ(Iz + 3(Ix − Iy) cos 2ψ)

4r3
(45)

Although an exchange between the orbital energy and atti-
tude motion energy always occurs, it is not accumulative.
Therefore, it is meaningful to check the average attitude mo-
tion energy Ēa, which is calculated as follows:

Fig. 6. Average attitude motion energy.

Ēa = lim
T →∞

1

T

∫ T

0
Eadt (46)

The values of Ēa for 500 revolutions are calculated and
shown in Fig. 6. When the initial condition coincides with
the periodic solution, the mean attitude motion energy Ēa has
the minimum value. In other cases, the amplitude of the at-
titude motion is larger. This result agrees with that obtained
from the analytical solution set.

5. Conclusion

The coupled librational and orbital motions of a large-
scale spacecraft are investigated.

From the analytical solution set obtained through the per-
turbation method, the qualitative characteristics have been
clarified. The analytical solution set shows that the motion
is stable except for a few values in the moment of inertia
ratios. The solution set also provides the equations of the
effects of coupling on orbital motion. The total mechanical
energy is formulated, and it is shown that total mechanical
energy has the minimum value when the motion coincides
with the periodic solution. This means that the periodic so-
lution is the minimum energy solution, and some perturba-
tion of librational motion always leads the total mechanical
energy to have a larger value. If the orbital parameters are
fixed, librational motion has the minimum energy when it
coincides with the periodic solution.

The nonlinear equations of motion are also investigated
numerically. From analyzing the periodic solutions and their
stability, it is shown that coupling does not affect stability
over a wide range of spacecraft dimensions. The Poincaré
maps also show stable coupled motion. From the several
numerical simulations, the mean attitude motion energy be-
comes minimum when motion coincides with the periodic
solution. We can consider that the results obtained from the
analytical solutions are still valid even without any approxi-
mations.

References

1) Moran, J. M.: Effects of Plane Librations on the Orbital Motion of a
Dumbbell Satellite, ARS J., 31 (1961), pp. 1089–1096.

2) Yu, E. Y.: Long-Term Coupling Effects between Librational and Or-
bital Motions of a Satellite, AIAA J., 2 (1964), pp. 553–555.

3) Beletskii, V. V.: Motion of an Artificial Satellite about Its Center of
Mass, NASA TT F-429, 1966.



Aug. 2003 67N. TAKEICHI et al.: Coupled Motion of Large-Scale Spacecraft

4) Cho, S., Lovell, T. A., Cochran, J. E., Jr. and Cicci, D. A.: Approx-
imate Solutions for Tethered Satellite Motion, AIAA J. Guidance, 24
(2001), pp. 746–754.

5) Murakami, C.: On Orbit Control Using Gravity Gradient Effects, Acta
Astronautica, 8 (1981), pp. 733–747.

6) Martines-Sanchez, M. and Gavit, S. A.: Orbital Modification Us-
ing Forced Tether-Length Variations, AIAA J. Guidance, 10 (1987),
pp. 233–241.

7) Landis, G. A.: Reactionless Orbital Propulsion Using Tether Deploy-
ment, Acta Astronautica, 26 (1992), pp. 307–312.

8) Watanabe, Y. and Nakamura, Y.: Orbit Control for a Spacecraft via
the Gravity Gradient Force, IAF Paper 98-A.2.08, 49th International
Astronautical Congress, Melbourne, Australia, 1998.

9) Oyama, K., Sasaki, S., Su, Y. and Balan, N.: Feasibility Study of a
Tethered Satellite System, Proc. of the 18th International Symposium
on Space Technology and Science (ISTS), Kagoshima, Japan, May
17–22, 1992, pp. 1851–1858.

10) Modi, V. J. and Brereton, R. C.: Periodic Solutions Associated with the
Gravity-Gradient-Oriented System: Part I. Analytical and Numerical

Determination, AIAA J., 7 (1969), pp. 1217–1225.
11) Modi, V. J. and Brereton, R. C.: Periodic Solutions Associated with the

Gravity-Gradient-Oriented System: Part II. Stability Analysis, AIAA
J., 7 (1969), pp. 1465–1468.

12) Takeichi, N., Natori, M. C. and Okuizumi, N.: In-Plane/Out-of-Plane
Librations of a Tethered System in Elliptical Orbits, Trans. Jpn. Soc.
Aeronaut. Space Sci., 43 (2001), pp. 196–202.

13) Takeichi, N., Natori, M. C. and Okuizumi, N.: Fundamental Strategies
for Deployment and Libration Control of a Tethered System in Ellip-
tical Orbits, IAF Paper 01-A.4.08, 52nd International Astronautical
Congress, Toulouse, France, 2001.

14) Meirovitch, L.: Elements of Vibration Analysis, McGraw-Hill, New
York, 1975, pp. 364–368.

15) Battin, R. H.: An Introduction to the Mathematics and Methods of As-
trodynamics, AIAA Education Series, AIAA, Inc., Washington, DC,
1987, pp. 199–205.

16) Parker, T. S. and Chua, L. O.: Practical Numerical Algorithms for
Chaotic Systems, Springer-Verlag, New York, 1989.


