115 research outputs found

    Characterization of Clay Bricks Surface Deformation Behavior through Digital Image Analysis

    Get PDF
    Handmade compacted clay bricks are an important integral building material especially for the low cost durable and affordable housing segment. Characterisation of physical, mechanical and deformation behavior of handmade clay bricks is essential to ensure material integrity and durability. In this paper, physical and mechanical properties are determined and the Particle Image Velocimetry (PIV) method is used to assess deformation behavior of bricks under uniaxial compressive loading. The bricks exhibit brittle failure with high strain localized along the cracks. The initiation and development of cracks on loading redistribute compressive strain within the brick with some regions experiencing minimum strain at failure. The relatively large displacements between cracks account for relatively large failure strain for the brittle bricks. A good concurrence is established between the strain assessment based on uniaxial compressive test and on image correlation using the PIV method. The average vector magnitude derived from PIV measurements, correlate well with the engineering strain and can thus be used for strain estimation in handmade clay bricks. Keywords: clay brick, Digital Image Correlation, deformation, particle image velocimetry, characterisation

    A routine method to study soil organic matter by particle-size fractionation : examples for tropical soils

    Get PDF
    Particle size fractionation is becoming commonly used for studying soil organic matter (OM). However, isolation of clay and silt represents a long and thus tedious step in the fractionation procedure. We propose an approach identical to the one utilized in particle size analysis with an estimation of the recoveries from aliquots ("aliquot" method) of the 0-2 and 0-20 micrometer fractions and no entire isolation ("decanting" method) of clay and silt. In comparison with the "decanting" method, the fraction and carbon (C) recoveries obtained by the "aliquot" method were satisfactory, but those of nitrogen (N) being hardly interpretable because of an insufficient accuracy of the determination method. The recommended method saves time and laboratory space and could be used as a routine particle size fractionation of soil OM. Finally, this paper lists various methodological aspects of considerable significance but rarely reported in published studies. (Résumé d'auteur

    Characterization of Surface Deformation Behavior, Mechanical and Physical Properties of Modified-clay Bricks

    Get PDF
    The demand for building material is ever increasing owing to population growth. Compacted clay bricks are an important integral building material especially for low cost durable and affordable housing segment. This is a valued building material since its properties can be modified to suit various loading conditions.  In this paper, the mechanical and physical properties of clay bricks modified with varying proportions of sawdust and polystyrene are determined. Increment of non-clay material proportion in the modified-clay bricks increases their porosity and water absorbency while their bulk densities, compressive and flexural strengths decreases. The use is made of Particle Image Velocimetry (PIV) method to assess the surface deformation behavior of the modified-clay bricks under uniaxial compressive loading. The distribution of surface deformation as assessed through PIV method is relatively uniform in pure-clay bricks while modified-clay bricks indicates a non-uniform deformation localized near the loading point at low strains. The strain distribution progressively spread out in the modified-clay brick as the failure point is approached. Keywords: Modified-clay brick, Digital Image Correlation, deformation, Particle Image Velocimetry, Characterisation

    Fitness Trade-Offs in the Evolution of Dihydrofolate Reductase and Drug Resistance in Plasmodium falciparum

    Get PDF
    Background: Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness. Methodology/Principal Findings: We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine. Conclusions/Significance: Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possibl

    A phase I trial to evaluate the safety and pharmacokinetics of low-dose methotrexate as an anti-malarial drug in Kenyan adult healthy volunteers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous investigations indicate that methotrexate, an old anticancer drug, could be used at low doses to treat malaria. A phase I evaluation was conducted to assess the safety and pharmacokinetic profile of this drug in healthy adult male Kenyan volunteers.</p> <p>Methods</p> <p>Twenty five healthy adult volunteers were recruited and admitted to receive a 5 mg dose of methotrexate/day/5 days. Pharmacokinetics blood sampling was carried out at 2, 4, 6, 12 and 24 hours following each dose. Nausea, vomiting, oral ulcers and other adverse events were solicited during follow up of 42 days.</p> <p>Results</p> <p>The mean age of participants was 23.9 ± 3.3 years. Adherence to protocol was 100%. No grade 3 solicited adverse events were observed. However, one case of transiently elevated liver enzymes, and one serious adverse event (not related to the product) were reported. The maximum concentration (C<sub>max</sub>) was 160-200 nM and after 6 hours, the effective concentration (C<sub>eff</sub>) was <150 nM.</p> <p>Conclusion</p> <p>Low-dose methotraxate had an acceptable safety profile. However, methotrexate blood levels did not reach the desirable C<sub>eff </sub>of 250-400-nM required to clear malaria infection <it>in vivo</it>. Further dose finding and safety studies are necessary to confirm suitability of this drug as an anti-malarial agent.</p

    Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    Get PDF
    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine

    Drug coverage in treatment of malaria and the consequences for resistance evolution - evidence from the use of sulphadoxine/pyrimethamine

    Get PDF
    BACKGROUND\ud \ud It is argued that, the efficacy of anti-malarials could be prolonged through policy-mediated reductions in drug pressure, but gathering evidence of the relationship between policy, treatment practice, drug pressure and the evolution of resistance in the field is challenging. Mathematical models indicate that drug coverage is the primary determinant of drug pressure and the driving force behind the evolution of drug resistance. These models show that where the basis of resistance is multigenic, the effects of selection can be moderated by high recombination rates, which disrupt the associations between co-selected resistance genes.\ud \ud METHODS\ud \ud To test these predictions, dhfr and dhps frequency changes were measured during 2000-2001 while SP was the second-line treatment and contrasted these with changes during 2001-2002 when SP was used for first-line therapy. Annual cross sectional community surveys carried out before, during and after the policy switch in 2001 were used to collect samples. Genetic analysis of SP resistance genes was carried out on 4,950 Plasmodium falciparum infections and the selection pressure under the two policies compared.\ud \ud RESULTS\ud \ud The influence of policy on the parasite reservoir was profound. The frequency of dhfr and dhps resistance alleles did not change significantly while SP was the recommended second-line treatment, but highly significant changes occurred during the subsequent year after the switch to first line SP. The frequency of the triple mutant dhfr (N51I,C59R,S108N) allele (conferring pyrimethamine resistance) increased by 37% - 63% and the frequency of the double A437G, K540E mutant dhps allele (conferring sulphadoxine resistance) increased 200%-300%. A strong association between these unlinked alleles also emerged, confirming that they are co-selected by SP.\ud \ud CONCLUSION\ud \ud The national policy change brought about a shift in treatment practice and the resulting increase in coverage had a substantial impact on drug pressure. The selection applied by first-line use is strong enough to overcome recombination pressure and create significant linkage disequilibrium between the unlinked genetic determinants of pyrimethamine and sulphadoxine resistance, showing that recombination is no barrier to the emergence of resistance to combination treatments when they are used as the first-line malaria therapy

    Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Four of five <it>Plasmodium </it>species infecting humans are present in Madagascar. <it>Plasmodium vivax </it>remains the second most prevalent species, but is understudied. No data is available on its susceptibility to sulphadoxine-pyrimethamine, the drug recommended for intermittent preventive treatment during pregnancy. In this study, the prevalence of <it>P. vivax </it>infection and the polymorphisms in the <it>pvdhfr </it>and <it>pvdhps </it>genes were investigated. The correlation between these polymorphisms and clinical and parasitological responses was also investigated in <it>P. vivax</it>-infected patients.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>clinical isolates were collected in eight sentinel sites from the four major epidemiological areas for malaria across Madagascar in 2006/2007. <it>Pvdhfr </it>and <it>pvdhps </it>genes were sequenced for polymorphism analysis. The therapeutic efficacy of SP in <it>P. vivax </it>infections was assessed in Tsiroanomandidy, in the foothill of the central highlands. An intention-to-treat analysis of treatment outcome was carried out.</p> <p>Results</p> <p>A total of 159 <it>P. vivax </it>samples were sequenced in the <it>pvdhfr/pvdhps </it>genes. Mutant-types in <it>pvdhfr </it>gene were found in 71% of samples, and in <it>pvdhps </it>gene in 16% of samples. Six non-synonymous mutations were identified in <it>pvdhfr</it>, including two novel mutations at codons 21 and 130. For <it>pvdhps</it>, beside the known mutation at codon 383, a new one was found at codon 422. For the two genes, different combinations were ranged from wild-type to quadruple mutant-type. Among the 16 patients enrolled in the sulphadoxine-pyrimethamine clinical trial (28 days of follow-up) and after adjustment by genotyping, 3 (19%, 95% CI: 5%–43%) of them were classified as treatment failure and were <it>pvdhfr </it>58R/117N double mutant carriers with or without the <it>pvdhps </it>383G mutation.</p> <p>Conclusion</p> <p>This study highlights (i) that genotyping in the <it>pvdhfr </it>and <it>pvdhps </it>genes remains a useful tool to monitor the emergence and the spread of <it>P. vivax </it>sulphadoxine-pyrimethamine resistant in order to improve the national antimalarial drug policy, (ii) the issue of using sulphadoxine-pyrimethamine as a monotherapy for intermittent preventive treatment of pregnant women or children.</p

    Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine

    Get PDF
    Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. METHODOLOGY AND FINDING: We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G]) and septuplet (BR/51I/108N/164L and 437G/540E/581G) with geometric means of 76 nM (35-166 nM), 582 nM (49-6890- nM) and 4909 (3575-6741 nM) nM for sulfadoxine and 33 nM (22-51 nM), 81 nM (19-345 nM), and 215 nM (176-262 nM) for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L) or dihydropteroate synthase (540E) predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L) vs 23.7% (I164); relative risk = 3.61; 95% CI: 2.14 - 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E) vs 37.5% (K540); relative risk = 2.58; 95% CI: 1.88 - 3.73). Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 - 7.46] compared to patients having both wild forms (I164 and K540).In this part of the Amazon basin, it may be possible to predict treatment failure with sulfadoxine-pyrimethamine equally well by determination of either of the single mutations dihydrofolate reductase 164L or dihydropteroate synthase 540E.ClinicalTrials.gov NCT00951106

    Combination of probenecid-sulphadoxine-pyrimethamine for intermittent preventive treatment in pregnancy

    Get PDF
    The antifolate sulphadoxine-pyrimethamine (SP) has been used in the intermittent prevention of malaria in pregnancy (IPTp). SP is an ideal choice for IPTp, however, as resistance of Plasmodium falciparum to SP increases, data are accumulating that SP may no longer provide benefit in areas of high-level resistance. Probenecid was initially used as an adjunctive therapy to increase the blood concentration of penicillin; it has since been used to augment concentrations of other drugs, including antifolates. The addition of probenecid has been shown to increase the treatment efficacy of SP against malaria, suggesting that the combination of probenecid plus SP may prolong the useful lifespan of SP as an effective agent for IPTp. Here, the literature on the pharmacokinetics, adverse reactions, interactions and available data on the use of these drugs in pregnancy is reviewed, and the possible utility of an SP-probenecid combination is discussed. This article concludes by calling for further research into this potentially useful combination
    corecore