8,313 research outputs found

    Young Clusters in the Nuclear Starburst of M 83

    Get PDF
    We present a photometric catalog of 45 massive star clusters in the nuclear starburst of M 83 (NGC 5236), observed with the Hubble Space Telescope WFPC2, in both broad-band (F300W, F547M, and F814W) and narrow-band (F656N and F487N) filters. By comparing the photometry to theoretical population synthesis models, we estimate the age and mass of each cluster. We find that over 75% of the star clusters more massive than 2*10^4 Msun in the central 300 pc of M 83 are less than 10 Myr old. Among the clusters younger than 10 Myr and more massive than 5*10^3 Msun, 70% are between 5 and 7 Myr old. We list an additional 330 clusters that are detected in our F300W images, but not in the shallower F547M and F814W images. The clusters are distributed throughout a semicircular annulus that identifies the active region in the galaxy core, between 50 and 130 pc from the optical center of M 83. Clusters younger than 5 Myr are preferentially found along the perimeter of the semicircular annulus. We suggest that the 5-7 Myr population has evacuated much of the interstellar material from the active ringlet region, and that star formation is continuing along the edges of the region.Comment: 40 pages, 13 figures, accepted to ApJ

    Different pathways in mechanical unfolding/folding cycle of a single semiflexible polymer

    Full text link
    Kinetics of conformational change of a semiflexible polymer under mechanical external field were investigated with Langevin dynamics simulations. It is found that a semiflexible polymer exhibits large hysteresis in mechanical folding/unfolding cycle even with a slow operation, whereas in a flexible polymer, the hysteresis almost disappears at a sufficiently slow operation. This suggests that the essential features of the structural transition of a semiflexible polymer should be interpreted at least on a two-dimensional phase space. The appearance of such large hysteresis is discussed in relation to different pathways in the loading and unloading processes. By using a minimal two-variable model, the hysteresis loop is described in terms of different pathways on the transition between two stable states.Comment: 19 pages, 5 figure

    Particle-Based Mesoscale Hydrodynamic Techniques

    Full text link
    Dissipative particle dynamics (DPD) and multi-particle collision (MPC) dynamics are powerful tools to study mesoscale hydrodynamic phenomena accompanied by thermal fluctuations. To understand the advantages of these types of mesoscale simulation techniques in more detail, we propose new two methods, which are intermediate between DPD and MPC -- DPD with a multibody thermostat (DPD-MT), and MPC-Langevin dynamics (MPC-LD). The key features are applying a Langevin thermostat to the relative velocities of pairs of particles or multi-particle collisions, and whether or not to employ collision cells. The viscosity of MPC-LD is derived analytically, in very good agreement with the results of numerical simulations.Comment: 7 pages, 2 figures, 1 tabl

    Spectroscopic evolution of dusty starburst galaxies

    Get PDF
    By using a one-zone chemical and spectrophotometric evolution model of a disk galaxy undergoing a dusty starburst, we investigate, numerically, the optical spectroscopic properties in order to explore galaxy evolution in distant clusters. We adopt an assumption that the degree of dust extinction (represented by AVA_V) depends on the ages of starburst populations in such a way that younger stars have larger AVA_V (originally referred to as selective dust extinction by Poggianti & Wu 2000). In particular, we investigate how the time evolution of the equivalent widths of [OII]λ\lambda3727 and Hδ\delta is controlled by the adopted age dependence. This leads to three main results: (1) If a young stellar population (with the age of \sim 10610^6 yr) is more heavily obscured by dust than an old one (>> 10810^8 yr), the galaxy can show an ``e(a)'' spectrum characterized by strong Hδ\delta absorption and relatively modest [OII] emission. (2) A dusty starburst galaxy with an e(a) spectrum can evolve into a poststarburst galaxy with an a+k (or k+a) spectrum 0.2 Gyr after the starburst and then into a passive one with a k-type spectrum 1 Gyr after the starburst. This result clearly demonstrates an evolutionary link between galaxies with different spectral classes (i.e., e(b), e(a), a+k, k+a, and k). (3) A dusty starburst galaxy can show an a+k or k+a spectrum even in the dusty starburst phase if the age-dependence of dust extinction is rather weak, i.e., if young starburst populations with different ages (\le 10710^7 yr) are uniformly obscured by dust.Comment: 27 pages 12 figures,2001,ApJ,in pres

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa
    corecore