7 research outputs found

    Protein-based immune profiles of basal-like vs. luminal breast cancers

    Get PDF
    Tumor-infiltrating lymphocytes play an important, but incompletely understood role in chemotherapy response and prognosis. In breast cancer, there appear to be distinct immune responses by subtype, but most studies have used limited numbers of protein markers or bulk sequencing of RNA to characterize immune response, in which spatial organization cannot be assessed. To identify immune phenotypes of Basal-like vs. Luminal breast cancer we used the GeoMx® (NanoString) platform to perform digital spatial profiling of immune-related proteins in tumor whole sections and tissue microarrays (TMA). Visualization of CD45, CD68, or pan-Cytokeratin by immunofluorescence was used to select regions of interest in formalin-fixed paraffin embedded tissue sections. Forty-four antibodies representing stromal markers and multiple immune cell types were applied to quantify the tumor microenvironment. In whole tumor slides, immune hot spots (CD45+) had increased expression of many immune markers, suggesting a diverse and robust immune response. In epithelium-enriched areas, immune signals were also detectable and varied by subtype, with regulatory T-cell (Treg) markers (CD4, CD25, and FOXP3) being higher in Basal-like vs. Luminal breast cancer. Extending these findings to TMAs with more patients (n = 75), we confirmed subtype-specific immune profiles, including enrichment of Treg markers in Basal-likes. This work demonstrated that immune responses can be detected in epithelium-rich tissue, and that TMAs are a viable approach for obtaining important immunoprofiling data. In addition, we found that immune marker expression is associated with breast cancer subtype, suggesting possible prognostic, or targetable differences

    Efficacy of Carboplatin Alone and in Combination with ABT888 in Intracranial Murine Models of BRCA-Mutated and BRCA-Wild-Type Triple-Negative Breast Cancer

    Get PDF
    Patients with breast cancer brain metastases have extremely limited survival and no approved systemic therapeutics. Triple negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis. TNBC frequently harbors BRCA mutations translating to platinum sensitivity potentially augmented by additional suppression of DNA repair mechanisms through poly(ADP-ribose)polymerase (PARP) inhibition. We evaluated brain penetrance and efficacy of Carboplatin +/− the PARP inhibitor ABT888, and investigated gene expression changes in murine intracranial (IC) TNBC models stratified by BRCA and molecular subtype status

    Evidence for a Rad18-Independent Frameshift Mutagenesis Pathway in Human Cell-Free Extracts

    Get PDF
    Bypass of replication blocks by specialized DNA polymerases is crucial for cell survival but may promote mutagenesis and genome instability. To gain insight into mutagenic sub-pathways that coexist in mammalian cells, we examined N-2-acetylaminofluorene (AAF)-induced frameshift mutagenesis by means of SV40-based shuttle vectors containing a single adduct. We found that in mammalian cells, as previously observed in E. coli, modification of the third guanine of two target sequences, 5'-GGG-3' (3G) and 5'-GGCGCC-3' (NarI site), induces –1 and –2 frameshift mutations, respectively. Using an in vitro assay for translesion synthesis, we investigated the biochemical control of these events. We showed that Pol eta, but neither Pol iota nor Pol zeta, plays a major role in the frameshift bypass of the AAF adduct located in the 3G sequence. By complementing PCNA-depleted extracts with either a wild-type or a non-ubiquitinatable form of PCNA, we found that this Pol eta-mediated pathway requires Rad18 and ubiquitination of PCNA. In contrast, when the AAF adduct is located within the NarI site, TLS is only partially dependent upon Pol eta and Rad18, unravelling the existence of alternative pathways that concurrently bypass this lesion

    IL2 Inducible T-cell Kinase, a Novel Therapeutic Target in Melanoma

    No full text
    PURPOSE: IL2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in melanomas compared with nevi. The expression of ITK in melanomas, however, has not been established and requires elucidation. EXPERIMENTAL DESIGN: An ITK-specific monoclonal antibody was used to probe sections from deidentified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was visualized by IHC. Levels of ITK protein differed among melanoma cell lines and representative lines were transduced with four different lentiviral constructs that each contained an shRNA designed to knockdown ITK mRNA levels. The effects of the selective ITK inhibitor BI 10N on cell lines and mouse models were also determined. RESULTS: ITK protein expression increased with nevus to metastatic melanoma progression. In melanoma cell lines, genetic or pharmacologic inhibition of ITK decreased proliferation and migration and increased the percentage of cells in the G0-G1 phase. Treatment of melanoma-bearing mice with BI 10N reduced growth of ITK-expressing xenografts or established autochthonous (Tyr-Cre/Pten(null)/Braf(V600E)) melanomas. CONCLUSIONS: We conclude that ITK, formerly considered an immune cell-specific protein, is aberrantly expressed in melanoma and promotes tumor development and progression. Our finding that ITK is aberrantly expressed in most metastatic melanomas suggests that inhibitors of ITK may be efficacious for melanoma treatment. The efficacy of a small-molecule ITK inhibitor in the Tyr-Cre/Pten(null)/Braf(V600E) mouse melanoma model supports this possibility

    IL2 Inducible T-cell Kinase, a Novel Therapeutic Target in Melanoma

    No full text
    PURPOSE: Interleukin-2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in melanomas compared to nevi. The expression of ITK in melanomas, however, has not been established and requires elucidation. EXPERIMENTAL DESIGN: An ITK specific monoclonal antibody was used to probe sections from de-identified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was visualized by immunohistochemistry. Levels of ITK protein differed among melanoma cell lines and representative lines were transduced with four different lentiviral constructs that each contained an shRNA designed to knockdown ITK mRNA levels. The effects of the selective ITK inhibitor BI 10N on cell lines and mouse models were also determined. RESULTS: ITK protein expression increased with nevus to metastatic melanoma progression. In melanoma cell lines, genetic or pharmacological inhibition of ITK decreased proliferation and migration and increased the percentage of cells in the G0/G1 phase. Treatment of melanoma-bearing mice with BI 10N reduced growth of ITK-expressing xenografts or established autochthonous (Tyr-Cre/Pten (null)/Braf (V600E)) melanomas. CONCLUSIONS: We conclude that ITK, formerly considered an immune cell-specific protein, is aberrantly expressed in melanoma and promotes tumor development and progression. Our finding that ITK is aberrantly expressed in most metastatic melanomas suggests that inhibitors of ITK may be efficacious for melanoma treatment. The efficacy of a small molecule ITK inhibitor in the Tyr-Cre/Pten(null)/Braf(V600E) mouse melanoma model supports this possibility

    Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    No full text
    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO(2)), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO(2) on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO(2) and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO(2) inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO(2) activates the ATM/Chk2 DNA damage response pathway
    corecore