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Purpose—Interleukin-2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in 

melanomas compared to nevi. The expression of ITK in melanomas, however, has not been 

established and requires elucidation.

Experimental Design—An ITK specific monoclonal antibody was used to probe sections from 

de-identified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was 

visualized by immunohistochemistry. Levels of ITK protein differed among melanoma cell lines 

and representative lines were transduced with four different lentiviral constructs that each 

contained an shRNA designed to knockdown ITK mRNA levels. The effects of the selective ITK 

inhibitor BI 10N on cell lines and mouse models were also determined.

Results—ITK protein expression increased with nevus to metastatic melanoma progression. In 

melanoma cell lines, genetic or pharmacological inhibition of ITK decreased proliferation and 

migration and increased the percentage of cells in the G0/G1 phase. Treatment of melanoma-

bearing mice with BI 10N reduced growth of ITK-expressing xenografts or established 

autochthonous (Tyr-Cre/Pten null/Braf V600E) melanomas.

Conclusions—We conclude that ITK, formerly considered an immune cell-specific protein, is 

aberrantly expressed in melanoma and promotes tumor development and progression. Our finding 

that ITK is aberrantly expressed in most metastatic melanomas suggests that inhibitors of ITK 

may be efficacious for melanoma treatment. The efficacy of a small molecule ITK inhibitor in the 

Tyr-Cre/Ptennull/BrafV600E mouse melanoma model supports this possibility.
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Introduction

Advances in understanding the genetic aberrations associated with melanoma initiation and 

progression have led to the recent U.S. Food and Drug Administration approval of three 

small molecule inhibitors against components in the BRAF-MEK pathway (1-3). However, 

these systemic therapies rarely lead to melanoma cures, even if used in combination (4). 

Next generation sequencing analyses of melanoma specimens identified a handful of genetic 

aberrations that may have “driver” roles in melanoma development and progression but 

some distinct melanoma subtypes bear none of the identified “driver” genetic aberrations 

(5). Current immunotherapies have admittedly led to cures, albeit in a small group of 

patients (6-8). While early clinical trials testing combinations of antibodies against immune 

checkpoint proteins have shown great promise, the toxicities and long-term efficacy are 

unknown and under investigation (9).

Using DNA-methylation profiling to discriminate primary cutaneous melanomas from 

benign moles, we determined that the promoter for IL-2 inducible T-cell kinase (ITK) was 

significantly hypomethylated in primary melanomas compared to nevi (10). This finding 

was unexpected because the expression of ITK, a member of the TEC family of tyrosine 

kinases that includes the Bruton's tyrosine kinase (BTK), is normally restricted to distinct 

immune cell subsets. In T cells, ITK functions downstream of the T-cell receptor and is 
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important for T-cell activation, development, differentiation, and production of many pro-

inflammatory cytokines (11). Given previous reports about the potential for lineage 

reprogramming of melanoma cells with acquisition of neural or angiogenic properties (12, 

13), we hypothesized that aberrant ITK expression in melanoma cells might foster tumor 

growth

Based on the finding that ITK CpG sites are hypomethylated in melanoma compared to nevi, 

we conducted experiments to determine if ITK was expressed in nevi and melanomas. The 

availability of potent ITK-selective inhibitors makes ITK an attractive target, and the TEC 

kinase BTK has been successfully targeted in hematologic malignancies (14). We therefore 

examined ITK expression in primary and metastatic melanomas and tested the effects of 

genetic and pharmacologic inhibition of ITK in cultured cells and murine melanoma models.

Materials and Methods

Tissue procurement

Human tissues analyzed (Supplementary Table S1) were obtained as de-identified, formalin-

fixed paraffin-embedded tumor blocks from the UNC Health Care archives under 

Institutional Review Board (IRB) approved protocols.

Tissue sections and tissue microarray (TMA) construction

Four micron-thick whole tissue sections (WTS) of nevi (n = 30) and primary invasive 

melanomas (n = 20) were used for tumor tissue analyses. TMAs of metastatic melanomas (n 

= 82) containing triplicate cores (0.6 mm) from each specimen were also constructed. A 

pathologist (P.A.G.) reviewed hematoxylin and eosin (H&E; Hematoxylin 7211, Eosin 

7111, Richard-Allan)-stained tissue sections to confirm the specimens' diagnoses and 

marked representative tumor areas on the H&Es for cores to be included in TMAs. TMA 

blocks were cut into 4 micron-thick sections. A pathologist examined H&E slides of the 

TMAs to confirm tumor presence.

Cell culture and western blots

Cells were grown in 10% FBS (S12450, Atlanta Biologicals) in base media without 

antibiotic unless noted. Human melanoma cell lines A375, VMM 39, SKMEL 103, SKMEL 

131, SKMEL 153, SKMEL 147, RPMI 8322, and PMWK were used for the cell biology 

experiments. A375, VMM 39, SKMEL 103, and SKMEL 147 were passaged in Dulbecco's 

Modified Eagle Medium (DMEM) (Gibco). SKMEL 131, SKMEL 153, and RPMI 8322 

were grown in RPMI 1640 media. PMWK cells were passaged in Alpha Minimum Essential 

Medium (MEM) media (Gibco) with 0.5x minimal essential amino acids. The sources and 

base media for the cell lines have been reported (15) except for SKMEL 235 and WM 1232 

(obtained from Wistar, M. Herlyn) and grown in RPMI 1640 (11875-093, Gibco) and TU 

2% [80% MCDB 153 (M-7403, Sigma), 20% L-15 media (41300-070, Gibco)], 2% fetal 

bovine serum (FBS) (S12450, Atlanta Biologicals), 5 μg/ml Bovine insulin (I-5500, Sigma), 

1.68 mM Calcium Chloride (C-5670, Sigma). Cell lines have been tested and authenticated 

and verified as mycoplasma-free. Normal human melanocytes (NHMs) (Clonetech) were 

cultured and western blots were performed as described previously (16).
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Melanocyte-melanoma cell line array (CLA) construction

CLAs were constructed from 38 melanoma cell line and 3 NHM pellets that were fixed in 

10% buffered formalin (SF98-4, Fisher) for 16-24h, washed twice in 70% ethanol, clotted in 

2% low-melting agarose (BP165-25, Fisher), processed, and embedded in paraffin wax 

(23-021-400, Fisher). Cell pellet blocks were sectioned and H&E-stained to verify the 

quality of the cell clots and guide CLA construction. Three 1-mm diameter cores were 

removed from each cell pellet block and randomly embedded into recipient CLA blocks, 

which were cut into 5 micron-thick sections.

Specimen pathology review

Melanomas were reviewed by a dermatopathologist. Demographic characteristics were 

extracted from the clinical record.

Antibodies, tissue staining protocols, imaging, and analysis

ITK (rabbit monoclonal Y401; Abcam ab32039) was utilized to probe human ITK. GAPDH 

(Abcam ab9484 mouse monoclonal), cyclin D2 (Santa Cruz Biotechnology sc-563056), and 

LC3 (Novus Biologicals NB 100-2220) were used for western Blots. Other antibodies and 

tissue staining protocols for the immunohistochemistry experiments are summarized in 

Supplementary Table S2. Single or dual IF on CLAs, melanoma TMAs and WTS of nevi 

and melanomas were performed in the Bond fully-automated slide staining system as 

previously described (17).

H&E stained WTS, CLA, and melanoma TMA slides were digitally imaged at 20x 

magnification using the Aperio ScanScope XT (Aperio Technologies). High-resolution 

acquisition (20x objective) of fluorescently stained slides in the DAPI, Cy3 and Cy5 

channels was performed in the Aperio-FL (Aperio Technologies) and fluorescently stained 

CLAs in PM2000 (HistoRx). Fluorescently stained WTS and TMAs (ITK-S100) were 

submitted for analysis through Spectrum using HistoRx automated quantitative analysis 

(AQUA) software version 2.2. Expression of ITK protein labeled by Cy5 (red) was 

measured in an S100-specific tumor mask labeled by Alexa555 (green) (6). ITK expression 

in CLAs was measured in the autofluorescent (Cy3) mask. Same specimen array cores were 

averaged. AQUA scores were normalized across the TMAs and WTS using cell line 

standards run in every batch. The Aperio Area Quantification FL algorithm was used to 

quantify ITK (Cy5) co-localization with CD3, CD19, CD56, CD57, CD68, MPO, and MCT 

markers (Cy3) in 3 primary melanomas and 2 melanomas metastatic to lymph nodes from 5 

different patients.

Tyr-Cre/Ptennull/BrafV600Emouse melanomas were stained as described (18) 

(Supplementary Table S2). Slides were blocked with DakoCytomation, X0909 (KEY 2006) 

and incubated with Abcam ab32113 for 1 hour at room temperature or 4°C overnight. The 

slides were blocked with Dako X0590 biotin blocking solution (X059030-2, Agilent). 

Chromogenic and fluorescently stained images were stored within the Aperio Spectrum 

Database.
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Melanoma mutational status

The BRAF (exons 11 and 15) and NRAS (exons 2 and 3) mutational status of primary 

melanomas and cell lines was determined as reported (19). Metastatic melanoma TMA cores 

were stained with BRAF VE1 antibody (20) and scored for VE1 cytoplasmic staining by a 

pathologist as 0 (no staining), 1+ (weak background), 2+ (moderate staining), or 3+ (strong 

staining). VE1 scores of 2+ and 3+ were considered positive for BRAFV600E.

shRNA lentivirus production and use

Lentiviral small hairpin RNA (shRNA) constructs TRCN0000010020 (ITK4), 

TRCN0000010021 (ITK5), TRCN0000010022 (ITK6), and TRCN0000010023 (ITK7) from 

the Thermo Scientific TRC shRNA library TRC-Hs1.0 (Human) were supplied by the UNC-

CH's Lenti-shRNA Core Facility. Lentivirus was produced according to the ViraPower™ 

Lentiviral Packaging Mix instructions (#44-2050, Invitrogen). Approximately 1×106 

lentiviral particles were added to transduce approximately 50% of the cells in a 7.5 cm dish. 

On day 2, media was removed and fresh complete media added then on day 3 media was 

replaced with fresh complete media containing puromycin (final concentration 10 μg/ml). 

Cells were allowed to grow for 4 days before use.

BI 10N, a small molecule ITK inhibitor

BI 10N (21) was from Changchun Discovery Sciences Ltd (Changchun, Jilin, China). 

Aliquots of a 1,000x stock solution in dimethylsulphoxide (DMSO) were prepared and 

stored at -20° C. Carna Biosciences (Kobe, Japan) performed selectivity assays.

Two-dimensional gel electrophoresis

Two-dimensional gel electrophoresis was performed using the Immobiline DryStrip 7 cm, 

pH 6-11 gel system according to the manufacturer's specifications (17-6001-94, GE 

Healthcare). Gels were then transferred and western blots were performed using the Y401 

antibody.

Proliferation and migration assays

Human melanoma cell lines were added to 10 cm2 6-well dishes at a density of 50,000 cells 

per well. BI 10N was added in DMSO; DMSO was used as a drug vehicle control. Cells 

were harvested using Trypsin (0.025%) in PBS solution (R-001-100, Gibco) containing 

0.01% EDTA for approximately 5 minutes. Cells were counted using the Countess® 

Automated Cell Counter (C10227, Life Technologies). Graphs were generated using 

GraphPad Prism version 5 (GraphPad Software, San Diego, CA).

Single-cell tracking was performed to calculate the average motility rate, as described 

previously (22). Cells were incubated for 24 hours with BI 10N prior to tracking. At least 50 

cells were tracked at each BI 10N concentration.

EdU – FxCycle violet staining of melanoma cells

Melanoma cells were grown to approximately 60% confluence in T25 tissue culture flasks 

(Corning Product #430639). Cells were labeled with Click-iT EdU Alexa fluor 488 
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(C10425, Invitrogen) followed by detection using FxCycle Violet (F-10347, Invitrogen), per 

manufacturer's recommendations. Data acquisition was accomplished using CyanADP from 

Bechman Coulter, and cell cycle analysis accomplished using Summit (version 4.3) software 

(DAKO).

Caspase glo 3/7 assay

The Promega Caspase-GLO 3/7 Assay Kit (G8090, Promega) was utilized per the 

manufacture's protocols. 10,000 melanoma cells were plated in 96 well dishes in 

quadruplicate with the indicated drug concentrations. 100 nM staurosporine was used as the 

positive control.

Reverse Phase Protein Array (RPPA)

PMWKs and RPMI 8322 cells were treated with increasing BI 10 concentrations, lysates 

were produced, and the MD Anderson core facility performed RPPA analyses (23).

In vivo studies

All mice were housed and followed in the UNC LCCC mouse phase 1 unit (MP1U) under 

UNC-CH Institute for Animal Care and Use Committee approved protocols. 10 week old 

male nude athymic mice (Jackson Labs 000819) were subcutaneously injected into the flank 

with 500,000 cells, which were previously suspended in a 50:50 mixture of Matrigel 

Basement Membrane Matrix (356234, BD Biosciences) and Hank's Solution with 2% FBS. 

The Tyr-Cre/Ptennull/BrafV600E GEMM was induced as described (24). Treatment began 

when tumors reached an approximate size of 60mm3. BI 10N was administered orally via 

medicated diet (25) at 15mg/kg/d. Body mass and body condition score (26) were monitored 

weekly via caliper measurements for the duration of the experiment as a marker for toxicity. 

Tumor volume was calculated using the formula: (Width2) × (Length)/2.

Statistical methods

Statistical analyses of IF data were accomplished using R software (The R project for 

Statistical Computing). Mann-Whitney and Kruskal-Wallis tests were used to compare ITK 

expression with clinical attributes in subsets of nevi, primary melanoma, and metastatic 

melanoma samples. Mann-Whitney tests were used to compare ITK expression with 

mutational status in melanoma metastases (mutant versus wild type) and genetic alterations 

(negative versus positive) in cell lines.

Linear regression analyses were performed for shRNA cell proliferation data using 

logarithmically transformed baseline normalized cell counts (y) against days (x). Similar 

regression analyses were performed for mouse tumor growth data using the square root-

transformed tumor volume (y) against weeks (x). Likelihood ratio tests were conducted to 

assess if slopes between control and treatment groups were statistically different from each 

other. Differences in melanoma cell motility among different treatment groups were 

assessed using Mann-Whitney U tests. P-values were Bonferroni corrected to account for 

multiple comparisons of different treatment groups for each cell line.
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For RPPA data, a linear regression line was fitted using protein expression as the dependent 

variable and BI 10N concentration as the independent variable to analyze RPPA data. T-

tests were used to assess if the estimated slopes significantly differed from zero. The P-

values of the t-tests for slope were adjusted using the False Discovery Rate control to 

account for multiple testings. Data were analyzed through the use of QIAGEN's Ingenuity® 

Pathway Analysis (IPA®, QIAGEN Redwood City, CA).

Microarray analysis

Analysis of microarray data (GEO accession number GSE54623) was performed using 

Biometric Research Branch (BRB, National Cancer Institute) array tools software (27). The 

quantitative trait analysis (QTA) tool used the Spearman correlation coefficient to identify 

genes whose expression was correlated with ITK expression in melanoma cell lines. The 

correlated (P-value <0.005) genes were investigated to determine if they were 

overrepresented in Biologic Biochemical Image Database (BBID) (28), Kyoto Encyclopedia 

of Genes and Genomes (KEGG) (29), BioCarta (30), Panther (31), or Reactome (30) 

pathways.

Study approval

Human tissues studies were IRB-approved under UNC protocols 07-0450 and 09-0737. 

Animal experiments were approved by the UNC Institutional Animal Care and Use 

Committee.

Results

ITK protein expression in melanocytic tissues

Sections of normal skin, benign nevus, primary melanoma, and metastatic melanomas were 

dually probed with antibodies against ITK (red) and S100 (green) (a marker for melanocytic 

lineage cells) and visualized using immunofluorescence (IF) (Example shown in Fig. 1A). 

ITK in melanocytic lineage cells of benign nevi (n = 30), primary melanomas (n = 20), and 

metastatic melanomas (n = 70) was quantified in the S100-positive cells using AQUA (32, 

33) (Fig. 1B and Supplementary Table S1). Mean ITK expression was higher in primary 

melanomas than benign nevi, and even higher in metastatic melanomas (P < 0.001). The 

mean ITK protein levels of nevi and melanomas were each not significantly associated (all P 

> 0.05) with demographic or tumor characteristics, and the melanomas' ITK protein levels 

were not associated with BRAFV600E status (Supplementary Table S1).

ITK protein expression in immune cell subsets

Since ITK has been shown to have a role in Th2-mediated responses, which have been 

previously associated with ineffective antitumor responses (34), we investigated whether 

ITK was expressed in immune subsets infiltrating the tumors. To accomplish this, we 

performed dual color IF analysis of ITK and markers of immune cell subsets on 3 primary 

melanomas and 2 melanomas metastatic to lymph nodes from 5 patients. ITK expression 

was observed in a few small mononuclear cells in the melanoma microenvironment, but did 

not colocalize with CD3+, CD19+, CD68+, myeloperoxidase (MPO)+, mast cell tryptase 

(MCT)+, CD56+, or CD57+ markers for T-cells, B-cells, macrophages, neutrophilic 
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granulocytes, mast cells, and subsets of natural killer cells (Supplementary Fig. S1A). We 

therefore could not confirm ITK expression in the most abundant tumor-infiltrating immune 

cell subsets.

Melanoma cell line characterization and ITK levels

To investigate whether ITK expression is associated with a particular gene expression or 

mutation signature, we first probed a melanocyte-melanoma cell line array (CLA) with the 

ITK antibody (Supplementary Table S2). These melanoma cell lines had previously 

undergone next generation sequencing (35) and gene expression profiling (16). The three 

different NHM cultures in the CLA had a mean ITK signal of 38.5 (range 26.7-52.3) in 

arbitrary IF units while 38 melanoma cell lines had a mean ITK signal of 278 (range 

30.4-4,941). To group the melanoma cell lines in the CLA by ITK levels, we used the ITK 

IF arbitrary units obtained for each cell line to classify them as ITK low (ITKLO) (< 38.5, 

the mean NHM IHC value), intermediate (ITKINT) (38.5 to <77.0, twice the mean NHM 

IHC ITK signal), or high (ITKHI) (≥ 77.0) (Supplementary Table S3). In comparison, 

western blots of 5 of these cell lines give an order from lowest to highest ITK expression 

(PMWK, SKMEL 147, A375, RPMI 8322, to VMM 39) indistinguishable from the IF 

determined order (Fig. 2A).

There were no significant associations (all P > 0.05) of ITK protein levels with NRAS and 

BRAF mutational status or CDKN2A, PTEN, or TP53 genetic alterations in the cell lines 

(data not shown). Quantitative Trait Analysis (QTA) was performed to correlate ITK 

expression with gene expression changes identified by the next generation sequencing and 

gene expression profiling. However, no (P < 0.05, Bonferroni corrected) gene or pathway 

alterations were associated with ITK expression (data not shown).

ITK protein depletion using small hairpin RNA (shRNA)

To confirm ITK's presence in melanoma cells and elucidate its role in melanoma, we stably 

transduced melanoma cell lines with lentiviral particles that contained a single shRNA 

designed to knockdown ITK mRNA levels (ITK 4, 5, 6, or 7). For negative controls, we 

transduced the same melanoma cell lines with lentiviral vectors containing a scrambled 

(SCR) shRNA sequence. As shown in Fig. 2B, western blot analysis of whole cell lysates 

showed a >85% decrease in the ITK protein level of VMM 39 (ITKHI) cells stably 

transduced with shRNAs ITK 4, 5, and 7, but ITK 6 and SCR shRNAs appeared inactive. 

No increase in dead cells or other morphological changes were noted in the lentivirally 

transduced melanoma cells. Comparable results were noted with the RPMI 8322 (ITKHI) 

cell line after lentiviral transduction (data not shown), whereas ITK protein levels in the 

PMWK (ITKLO) cell line were too low to reliably measure significant changes in ITK 

protein levels (Fig. 2A).

The shRNAs were utilized to study the effects of decreased ITK protein expression on 

melanoma cell proliferation, cell cycle profile, apoptosis, and motility. Melanoma cell lines 

VMM 39 and RPMI 8322 (both ITKHI) transduced with shRNAs ITK 4, 5, or 7 proliferated 

at a decreased rate (P < 0.05, Bonferroni corrected) compared to those transduced with SCR 

(Fig. 2C-D and Table S4). shRNAs ITK 5 and 7 had no affect (P > 0.05) on PMWK 
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(ITKLO) proliferation, although ITK 4 slightly decreased the proliferation of PMWK 

compared to SCR.

To assess whether ITK suppression induced changes in the cell cycle, incorporation of 5-

ethynyl-2″-deoxyuridine (EdU) was measured to determine de novo DNA synthesis (S-

phase). In addition, each cell line was stained using FxCycle violet to measure DNA content. 

Inhibition of ITK expression in the VMM 39 (ITKHI) and RPMI 8322 (ITKHI) cell lines 

increased the proportion of cells in G0/G1 (FxCyclelow EdUlow) and decreased the number 

of cells in S phase (FxCyclemedium/lowEdUhigh). There were no significant cell cycle changes 

in PMWK (ITKLO) melanoma cells transduced with any of the shRNAs (data not shown).

Since ITK regulates migration in T cells (36, 37), we investigated the effect of ITK 

expression on melanoma cell line motility quantified by single-cell tracking analysis (38). 

Migration rates of the ITK 4, 5, or 7- transduced VMM 39 (ITKHI) and RPMI 8322 (ITKHI) 

cell lines were significantly decreased (P < 0.05, Bonferroni corrected) compared to the 

corresponding SCR-transduced cell lines (Fig. 2E and 2F and Supplementary Table S4). No 

significant changes in the migration rate of the PMWK (ITKLO) cells were observed 

following transduction with any of the lentiviral clones.

BI 10N decreases ITK activity in melanoma cells

To assess the effect of pharmacologic inhibition of ITK activity in melanoma cell lines, we 

used BI 10N, a small molecule inhibitor of ITK (21, 39). We investigated the potency and 

selectivity of BI 10N at a concentration of 200 nM against 56 kinases using a cell-free assay 

(Supplementary Table S5). IC50s were measured for the kinases most potently inhibited by 

BI 10N in the initial screen, and tight binding studies were performed as needed. BI 10N is a 

highly selective inhibitor of ITK, and this affinity is described by an apparent dissociation 

constant (KI,apparent) of 8.6 pM. Of the 56 protein kinases tested, BI 10N is at least 1,000-

fold more selective for ITK than for 51 of the protein kinases and is about 10-fold selective 

over three members of the neurotrophic tyrosine receptor kinase family (TRKA, TRKB, 

TRKC) and the SRC family member non-receptor tyrosine kinase YES. BI 10N is about 

1,000-fold more selective for ITK than for the seven other SRC family tyrosine kinases 

tested including SRC and FYN.

To assess whether ITK expressed in melanoma cells is active, we probed phosphorylation at 

Tyr-180 and 511 residues (40) in whole cell lysates from high ITK-expressing melanoma 

cell lines with the commercially available antibodies 4F10 and 8D11, but could not identify 

a correctly migrating band. To quantitate ITK phosphorylation in the melanoma cells, we 

therefore performed two-dimensional electrophoresis on whole cell lysates obtained from 

RPMI 8322 cells followed by western blot analysis using the ITK Y401 antibody. Lysates 

profiled included those from untreated cells, phosphatase treated cells, and from cells treated 

with different concentrations of BI 10N for 3 days prior to harvest (Fig. 3A). In untreated 

RPMI 8322 cells, two differentially charged immune reactive bands that migrated with the 

appropriate weight for ITK were identified as ITK by western blot analysis. However, one 

of the immune reactive bands was absent in extracts treated with lambda phosphatase and 

from extracts from cells treated with concentrations of BI 10N ≥ 25 nM. In untreated cells, 

about 14% of ITK is phosphorylated.
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To determine whether the ITK's catalytic activity stimulates the proliferation and migration 

of melanoma cell lines, we inhibited ITK using BI 10N. Proliferation assays were conducted 

on PMWK (ITKLO), VMM 39 (ITKHI), RPMI 8322 (ITKHI), and other melanoma cell lines 

(Fig. 3B, 3C, data not shown, and Supplementary Table S4). In these studies, BI 10N was 

added at the inception of the assay at the indicated concentrations when the cells were 

plated. Similar to the equivalent shRNA studies, proliferation of the ITKHI cell lines (VMM 

39, RPMI 8322, and SKMEL 153) and an ITKINT cell line (A375) decreased by about 50% 

in the presence of 50 nM BI 10N, whereas the effects on the proliferation of PMWK 

(ITKLO) cells was weaker and required 200 nM BI 10N. ITK catalytic activity inhibition by 

BI 10N reduced ITKHI cell proliferation and migration similar to shRNA suppression of ITK 

expression. Isogenic overexpression of ITK was not performed to confirm these results.

Cell cycle analysis of VMM 39 (ITKHI) and RPMI 8322 (ITKHI) cell lines using EdU 

labeling and FxCycle Violet staining indicated that, similar to the shRNA studies, treatment 

of cells with BI 10N increased the percentage of cells in the G0/G1 phase and decreased the 

percentage of cells in the S phase in a dose-dependent manner (Supplementary Fig. S1B). 

No cell cycle-specific changes were observed between the treated and untreated PMWK 

(ITKLO) cells. BI 10N did not affect the percentage of cells in pre-G0/G1 in PMWK, RPMI 

8322, or VMM 39 cells (data not shown). To further assess the effects of ITK activity on 

apoptosis, caspase 3/7 activities in PMWK, RPMI, and VMM 39 were assessed; no 

consistent effects by BI 10N on the caspase activity levels were noted (data not shown).

The effects of BI 10N on melanoma cell migration was measured for PMWK (ITKLO), 

VMM 39 (ITKHI), RPMI 8322 (ITKHI), and additional melanoma cell lines (Fig. 3D, 3E, 

data not shown, and Supplementary Table S4), by single-cell tracking analysis. Similar to 

the results with the shRNA clones targeting ITK, the migration by the ITKHI cell lines 

(VMM39, RPMI 8322, and SKMEL 153) decreased about 50% in the presence of 10 – 25 

nM BI 10N while an ITKINT cell line (A375) and the ITKLO cell line PMWK required BI 

10N concentrations of 100 nM, or greater, to significantly decrease migration.

Effects of ITK activity on specific cellular proteins

Westerns were performed on RPMI 8322 cells treated with BI 10N administered at 

concentrations as high as 50nM for 3 days. Inhibition of ITK resulted in cyclin D2 (CCND2) 

decrease by about one-third but no change in LC3 (MAP13LC3A) level (related to 

autophagy) (Supplementary Fig. 2A). AKT and ERK protein levels and phosphorylation 

were unchanged by western analyses (data not shown).

To further investigate the effects of ITK activity on cells, RPPAs (282 proteins or 

phosphorylated species) were performed on triplicate extracts of PMWK and RPMI 8322 

cells treated with up to 50nM BI 10N. The RPPA results confirmed the phosphor western 

analyses we performed for AKT and ERK showing no change in the phoshphorylation state 

of those proteins (data not shown). Ingenuity Pathway Analysis (IPA) using a cutoff FDR 

value of 0.15 indicated that the most affected pathway was p53 signaling with cell cycle 

arrest being influenced but not apoptosis or cell survival (Supplementary Table S6 and Fig. 

S2B). RPPA-determined levels of protein analyzed in the p53 pathway are plotted in 

Supplementary Fig. S2C.
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Efficacy of BI 10N in murine melanoma models

To investigate whether BI 10N reduces melanoma growth in vivo, we treated mouse 

melanoma models with medicated chow containing BI 10N (21). Dose-finding studies based 

on the published literature were performed to establish an effective dose of 15 mg per kg 

(mpk)/day. No signs of toxicity (e.g. weight loss, lethargy) were noted in immunodeficient 

or genetically engineered mice at this dose. Human melanoma xenograft mice were 

established from two melanoma cell lines with high ITK expression (VMM 39 and RPMI 

8322) and from a lower ITK expressing line, A375. Treatment of each xenograft mouse 

model with BI 10N at 15 mpk significantly slowed tumor growth in the VMM 39 and RPMI 

8322 mice, whereas no such effect was seen in the melanoma xenograft mice established 

from A375 cells (Fig. 4A).

Given ITK's possible effect on immune system function, we tested BI 10N in 

immunocompetent mice with autochthonous melanoma. For this purpose, we employed the 

Tyr-CRE-ERT2 B-RafCA PtenL/L genetically engineered murine model (GEMM) (24). In this 

system, endogenous tumors featuring V600E B-Raf mutation and Pten loss are generated by 

tissue-specific CRE recombinase activation in melanocytes. Melanomas from this model 

expressed high levels of ITK in all 5 excised tumors tested (Fig. 4B). Mice were dosed with 

BI 10N after the tumors reached a size of about 60mm3. Treatment of mice with BI 10N at 

15 mpk resulted in arrest of tumor growth compared to the untreated mice (Fig. 4C). These 

results suggest that ITK kinase activity is a driver of tumor growth in a GEMM of 

melanoma. GEMM mice survive significantly longer when treated with BI 10N (Fig. 4D). 

Similar to the treated cell lines, cyclin D2 was decreased by at least one-third in BI 10N 

treated versus untreated tumors, whereas LC3 showed no change (data not shown).

Discussion

Our work provides several lines of evidence that ITK, a gene whose promoter CpG sites are 

hypomethylated in primary melanomas compared to benign nevi, is expressed in a majority 

of metastatic and primary melanoma tumors. Specifically, we show that ITK protein 

expression increased with tumor progression from nevus to primary melanoma and even 

more so to metastatic melanoma. Furthermore, suppression of ITK expression or kinase 

function in melanoma cells reduced cell attributes associated with tumorigenesis, including 

proliferation and motility. Finally, inhibition of ITK activity using BI 10N reduced tumor 

growth in both animal models and in addition extended the survival of the Tyr-Cre/Ptennull/

BrafV600E mice.

To our knowledge, this is the first report that ITK is highly expressed in non-hematopoietic 

tissues and even more so by a solid tumor malignancy, such as melanoma. One group 

reported low level expression of ITK mRNA in colon cancer tumor tissues, but commented 

that its expression was probably derived from contaminating host cells (41). Previous studies 

about the putative oncogenic role of ITK have been limited to its increased or aberrant 

expression in T-cell malignancies (42-44). It has also been reported that an ITK inhibitor 

had cytotoxic effects on malignant T cells (43). We are not aware of previous studies 

reporting ITK inhibition of solid tumor malignancies.
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Our review of the 226 melanoma samples that have undergone next generation sequencing 

and putative copy-number analysis as part of The Cancer Genome Atlas (TCGA) Project 

(45, 46) using the GISTIC tool revealed no evidence of copy number alterations or somatic 

mutations that could account for the ITK expression in the cells or clinical samples reported 

here. The lack of ITK gene copy number alterations in the TCGA melanomas together with 

our finding that melanomas are hypomethylated in the ITK promoter relative to nevi (10) 

and express ITK protein suggests that epigenetic rather than genetic mechanisms, at least in 

part, account for the high ITK expression in melanoma.

Therapeutic targeting of ITK in melanoma should critically consider its bystander effect on 

the host immune response given the overwhelming evidence that a functioning immune 

system is fundamental for antitumor responses against this disease. Of note, our 

investigations failed to demonstrate ITK expression in several tumor-infiltrating immune 

cell subsets such as T cells, polymorphonuclear cells, mast cells, natural killer cells and 

macrophages. Importantly, the antitumor effect of BI 10N remained significant in 

immunocompetent mice with melanoma, suggesting at least the lack of a significant 

negative effect of ITK inhibition on the host anti-tumor response.

In this work, we characterized the kinase inhibitor profile of BI 10N, a small molecule 

selective inhibitor of ITK previously used in animal studies (21). BI 10N was highly 

selective for ITK over a large panel of kinases, but not for 3 TRK family members and the 

SFK member YES. Although TRKA and TRKB are highly expressed in melanoma (47), the 

effects of BI 10N are most likely mediated through the inhibition of ITK as the effects of BI 

10N on melanoma cells are similar to those achieved with ITK depletion using shRNAs.

A limitation to our work is that the mechanism by which ITK increases cell proliferation and 

migration remains unknown. BI 10N treatment did not change AKT and ERK 

phosphorylation levels in RPMI 8322 cells. However, evidence presented indicates that the 

mechanism by which ITK activity drives the cell cycle may involve changes in the p53 

pathway, and in particular modulation of cyclin levels, but further studies are needed to 

clarify these issues.

In summary, ITK appears to be a driver of melanoma as demonstrated by its expression in 

most of the metastatic melanomas examined and by the significant effects of BI 10N on the 

proliferation and migration of melanoma cells and its efficacy in mouse melanoma models. 

We are currently investigating rational treatment combinations between ITK inhibitors and 

standard treatments for metastatic melanoma in various preclinical melanoma models that 

may serve as the basis for future clinical trials in metastatic melanoma. Besides BI 10N, 

several other ITK inhibitors previously have been developed to target Th2 dominant 

autoimmune, inflammatory, and infectious diseases (48, 49). Notably, ibrutinib 

(IMBRUVICA, Pharmacyclics, Inc.), an irreversible inhibitor of BTK and ITK (50), has 

been granted approval by the U.S. Food and Drug Administration. We conclude that ITK is 

a novel target for the treatment of melanoma that, at least in animal models, is amenable to 

pharmacologic intervention.

Carson et al. Page 12

Clin Cancer Res. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Emerging systemic therapies for metastatic melanoma extend life but are rarely curative 

for the majority of patients. Our finding that interleukin-2 inducible T-cell kinase (ITK), 

a TEC family tyrosine kinase, is aberrantly expressed in most metastatic melanomas 

suggests that inhibitors of ITK might be useful for melanoma treatment. The efficacy of a 

small molecule ITK inhibitor in the Tyr-Cre/Ptennull/BrafV600E mouse melanoma model 

suggests that ITK is a driver of melanoma progression and a potential therapeutic target. 

Ibrutinib, an inhibitor of the TEC family Bruton's tyrosine kinase, also inhibits ITK and 

was recently FDA-approved for treatment of hematologic malignancies. Therefore, 

considering the clinical success of targeting tyrosine kinases for treatment of other 

malignancies, trials using ITK inhibitors for treatment of human melanoma, alone or in 

combination with existing therapies, are warranted.
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Figure 1. 
ITK expression in melanocytic tissues. (A) Representative tissue sections from normal skin 

(a), benign nevus (b), primary melanoma (c), and metastatic melanoma (d) were stained with 

H&E (top row) or probed with ITK-Cy5 (red) and S100-Alexa 555 (green) primary and 

secondary antibodies and counterstained with DAPI (blue). Orange indicates colocation of 

ITK with S100, a melanocytic lineage marker. The clinical and histologic characteristics of 

the melanocytic tissues stained and their ITK levels are in Supplementary Table S1. Staining 

protocols are in Supplementary Table S2. (B) Box-and-Whisker plots (median with the 

25-75th percentiles and outliers) of ITK expression in S100+ cells from nevi (n = 30), 

primary melanomas (n = 20), and metastatic melanomas (n = 70). Of the metastatic 

melanomas, 91% (64/70) had ITK expression above that of the range of ITK expression 

found in nevi.
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Figure 2. 
ITK Expression in melanoma cell lines and effects of ITK depletion on their proliferation 

and motility. (A) Western blot analysis for total ITK in whole cell protein lysates obtained 

from five melanoma cell lines. Signal intensities of the protein bands were normalized to 

GAPDH. Cell array IF values from Supplementary Table S3 are also shown for comparison. 

(B) Western blot analysis for total ITK in protein lysates obtained from VMM 39 melanoma 

cells that were transduced with shRNA sequences designed to target ITK mRNA (ITK 4, 5, 

6, and 7) and with scrambled (SCR) shRNA. The integrated values of ITK containing bands 

shown in the figure were normalized against the GAPDH values to produce the ratio shown 

in the figure. (C) Effects of the five shRNAs on the proliferation rates of PMWK, VMM 39 

and RPMI 8322 melanoma cells. Asterisks denote melanoma cell lines whose proliferation 

was significantly reduced compared to SCR shRNA (P < 0.05, Bonferroni corrected; 

Supplementary Table S4A). (D) Single-cell motility analysis of PMWK, VMM 39 and 

RPMI 8322 cells transduced with various shRNAs. Asterisks denote significant changes in 

motility compared to SCR shRNA (P < 0.05, Bonferroni corrected; Supplementary Table 

S4B).
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Figure 3. 
Effects of BI 10N on the phosphorylation of ITK and on the proliferation and motility of 

melanoma cells. (A) Western blot analysis on whole cell lysates obtained from RPMI 8322 

cells. Cells were treated with BI 10N for 3 days at the indicated concentrations prior to the 

analysis. Extracts of cells that did not receive BI 10N were treated with phosphatase prior to 

analysis. Proteins from lysates were separated by two-dimensional polyacrylamide gel 

electrophoresis prior to Western blot analysis using an antibody against total ITK. The 

percentages indicate the area of the smaller band as a percent of the whole signal. (B) 

Effects of increasing BI 10N concentrations on the proliferation rates of PMWK, VMM 39 

and RPMI 8322 melanoma cells. Asterisks denote significant decreases in proliferation 

compared to untreated cells (P < 0.05, Bonferroni corrected; Supplementary Table S4C). (C) 

Effects of increasing BI 10N concentrations on the motility of PMWK, VMM 39 and RPMI 

8322 melanoma cells treated for 24 hours prior to the assay. Asterisks denote significant 

decreases in motility in BI 10N-treated compared to untreated melanoma cells (P < 0.05, 

Bonferroni corrected; Supplementary Table S4D).
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Figure 4. 
Effects of BI 10N on tumor growth in vivo. (A) Effects of BI 10N (15mpk) on the growth of 

human melanoma xenografts (mean and standard error of mean). Asterisks indicate 

significant tumor growth inhibition by BI 10N-treatment compared to untreated mice (P < 

0.05, Bonferroni corrected). AZD6244 (37 mpk), an active agent against melanoma, is 

shown for comparison. Samples sizes are indicated in parentheses. (B) Representative 

sections from an untreated melanoma tumor tissue that was induced within the CRE-ERT2 

B-RafL/+PtenL/L genetically engineered mouse model (GEMM). The left panel is stained 

with H&E, The center panel is stained with the biotin linked secondary antibody, while the 

right panel is stained both with antibodies against total ITK (red) and biotin linked 

secondary antibody then counterstained with hematoxylin. The lower panels are magnified 

areas of each of these images. (C) Effect of BI 10N on tumor growth (mean and standard 

error of mean) in the PTEN/BRAF GEMM. Asterisks indicate significant tumor growth 

inhibition of BI 10N-treated compared to untreated mice (P < 0.05, Bonferonni corrected). 

The effects of AZD6244 and PLX4032 on tumor growth are also shown. The activity of 

PLX4032 shown in C is typical for the GEMM model. Samples sizes are indicated in 

parentheses. (D) Melanoma bearing mice survive longer when orally dosed with 15 

milligrams/kilogram BI 10N. According to the protocol governing the use of mice, the 

animals have to be sacrificed when the tumors reach a specific size. Of the 9 BI 10N treated 
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animals, 7 were culled due to a multiple masses developing at the end of therapy while the 

primaries were still responding or had not reached a terminal burden. 1 animal had a primary 

that achieved a complete response and was culled at 133 days due to age and IACUC time 

limits. 1 animal was culled due to a progressing primary with no secondary mass.
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