21,488 research outputs found
AB effect and Aharonov-Susskind charge non-superselection
We consider a particle in a coherent superposition of states with different
electric charge moving in the vicinity of a magnetic flux. Formally, it should
acquire a (gauge-dependent) AB relative phase between the charge states, even
for an incomplete loop. If measureable, such a geometric, rather than
topological, AB-phase would seem to break gauge invariance. Wick, Wightman and
Wigner argued that since (global) charge-dependent phase transformations are
physically unobservable, charge state superpositions are unphysical (`charge
superselection rule'). This would resolve the apparent paradox in a trivial
way. However, Aharonov and Susskind disputed this superselection rule: they
distinguished between such global charge-dependent transformations, and
transformations of the relative inter-charge phases of two particles, and
showed that the latter \emph{could} in principle be observable! Finally, the
paradox again disappears once we considers the `calibration' of the phase
measured by the Aharonov-Susskind phase detectors, as well as the phase of the
particle at its initial point. It turns out that such a detector can only
distinguish between the relative phases of two paths if their (oriented)
difference forms a loop around the flux
The Roughness Properties of Small Ice-Bearing Craters at the South Pole of the Moon: Implications for Accessing Fresh Water Ice in Future Surface Operations
The lunar poles provide a fascinating thermal environment capable of cold-trapping water ice on geologic timescales [1]. While there have been many observations indicating the presence of water ice at the lunar surface [e.g., 24], it is still not clear when this ice was delivered to the Moon. The timing of volatile dep-osition provides important constraints on the origin of lunar ice because different delivery mechanisms have been active at different times throughout lunar history. We previously found that some small (<10 km) cra-ters at the south pole of the Moon have morphologies suggestive of relatively young ages, on the basis of crisp crater rims [5]. These craters are too small to date with robust cratering statistics [5], but the possibility of ice in young craters is intriguing because it suggests that there is some recent and perhaps ongoing mechanism that is delivering or redistributing water to polar cold traps. Therefore, understanding if these small, ice-bear-ing craters are indeed young is essential in understand-ing the age and source of volatiles on the Moon. Here we take a new approach to understand the ages of these small polar cold traps: analyzing the roughness properties of small ice-bearing craters. It is well under-stood that impact crater properties (e.g., morphology, rock abundance, and roughness) evolve with time due to a variety of geologic and space-weathering processes [611]. Topographic roughness is a measurement of the local deviation from the mean topography, providing a measurement of surface texture, and is a powerful tool for evaluating surface evolution over geologic time [e.g., 1114]. In this study we analyze the roughness of southern lunar craters (40S90S) from all geologic eras, and determine how the roughness of small (<10 km) ice-bearing craters compare. We discuss the implications of the ages of ice-bearing south polar craters, and potential strategies for accessing fresh ice on the Moon
Quasi-hermitian Quantum Mechanics in Phase Space
We investigate quasi-hermitian quantum mechanics in phase space using
standard deformation quantization methods: Groenewold star products and Wigner
transforms. We focus on imaginary Liouville theory as a representative example
where exact results are easily obtained. We emphasize spatially periodic
solutions, compute various distribution functions and phase-space metrics, and
explore the relationships between them.Comment: Accepted by Journal of Mathematical Physic
Magnetic properties of La(0.67)Sr(0.33)MnO3/BiFeO3(001) heterojunctions: chemically abrupt versus atomic intermixed interface
Using first-principles density-functional calculations, we address the
magnetic properties of the ferromagnet/antiferromagnet
La(0.67)Sr(0.33)MnO3/BiFeO3(001) heterojunctions, and investigate possible
driving mechanisms for a ferromagnetic (FM) interfacial ordering of the Fe
spins recently observed experimentally. We find that the chemically abrupt
defect-free La(0.67)Sr(0.33)MnO3/BiFeO3(001) heterojunction displays, as ground
state, an ordering with compensated Fe spins. Cation Fe/Mn intermixing at the
interface tends to favour, instead, a FM interfacial order of the Fe spins,
coupled antiferromagnetically to the bulk La(0.67)Sr(0.33)MnO3 spins, as
observed experimentally. Such trends are understood based on a model
description of the energetics of the exchange interactions.Comment: 6 pages, 6 figure
5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal
We study two-dimensional rotation-symmetric number-conserving cellular
automata working on the von Neumann neighborhood (RNCA). It is known that such
automata with 4 states or less are trivial, so we investigate the possible
rules with 5 states. We give a full characterization of these automata and show
that they cannot be strongly Turing universal. However, we give example of
constructions that allow to embed some boolean circuit elements in a 5-states
RNCA
Quantum-Mechanical Dualities on the Torus
On classical phase spaces admitting just one complex-differentiable
structure, there is no indeterminacy in the choice of the creation operators
that create quanta out of a given vacuum. In these cases the notion of a
quantum is universal, i.e., independent of the observer on classical phase
space. Such is the case in all standard applications of quantum mechanics.
However, recent developments suggest that the notion of a quantum may not be
universal. Transformations between observers that do not agree on the notion of
an elementary quantum are called dualities. Classical phase spaces admitting
more than one complex-differentiable structure thus provide a natural framework
to study dualities in quantum mechanics. As an example we quantise a classical
mechanics whose phase space is a torus and prove explicitly that it exhibits
dualities.Comment: New examples added, some precisions mad
On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site
We consistently formalize the probabilistic description of multipartite joint
measurements performed on systems of any nature. This allows us: (1) to specify
in probabilistic terms the difference between nonsignaling, the Einstein-
Podolsky-Rosen (EPR) locality and Bell's locality; (2) to introduce the notion
of an LHV model for an S_{1}x...xS_{N}-setting N-partite correlation
experiment, with outcomes of any spectral type, discrete or continuous, and to
prove both general and specific "quantum" statements on an LHV simulation in an
arbitrary multipartite case; (3) to classify LHV models for a multipartite
quantum state, in particular, to show that any N-partite quantum state, pure or
mixed, admits an Sx1x...x1 -setting LHV description; (4) to evaluate a
threshold visibility for a noisy bipartite quantum state to admit an S_{1}xS_
{2}-setting LHV description under any generalized quantum measurements of two
parties. In a sequel to this paper, we shall introduce a single general
representation incorporating in a unique manner all Bell-type inequalities for
either joint probabilities or correlation functions that have been introduced
or will be introduced in the literature.Comment: 26 pages; added section Conclusions and some references for section
Reduction of Effective Terahertz Focal Spot Size By Means Of Nested Concentric Parabolic Reflectors
An ongoing limitation of terahertz spectroscopy is that the technique is
generally limited to the study of relatively large samples of order 4 mm across
due to the generally large size of the focal beam spot. We present a nested
concentric parabolic reflector design which can reduce the terahertz focal spot
size. This parabolic reflector design takes advantage of the feature that
reflected rays experience a relative time delay which is the same for all
paths. The increase in effective optical path for reflected light is equivalent
to the aperture diameter itself. We have shown that the light throughput of an
aperture of 2 mm can be increased by a factor 15 as compared to a regular
aperture of the same size at low frequencies. This technique can potentially be
used to reduce the focal spot size in terahertz spectroscopy and enable the
study of smaller samples
Relaxation Phenomena in a System of Two Harmonic Oscillators
We study the process by which quantum correlations are created when an
interaction Hamiltonian is repeatedly applied to a system of two harmonic
oscillators for some characteristic time interval. We show that, for the case
where the oscillator frequencies are equal, the initial Maxwell-Boltzmann
distributions of the uncoupled parts evolve to a new equilibrium
Maxwell-Boltzmann distribution through a series of transient Maxwell-Boltzmann
distributions. Further, we discuss why the equilibrium reached when the two
oscillator frequencies are unequal, is not a thermal one. All the calculations
are exact and the results are obtained through an iterative process, without
using perturbation theory.Comment: 22 pages, 6 Figures, Added contents, to appear in PR
- …
