12 research outputs found

    LMP1 expression in bone marrow trephines of patients with multiple myeloma confers a survival advantage

    No full text
    Multiple myeloma (MM) is a heterogeneous disease of the bone marrow (BM). Its association with Epstein-Barr virus (EBV) remains enigmatic. Aim of our study was to determine expression of latent membrane protein 1 (LMP1), aldehyde dehydrogenase 1 (ALDH1), CD117 and their association with 5-year survival in MM patients. Seven percent of cases expressed LMP1 in MM cells with no association with survival. Whereas, LMP1 expression in CD138- non-neoplastic cells was observed in 80% of the cases, conferring a survival advantage of 1.75 years (mean 3.75 ± 0.28, 95% CI 3.19-4.3). LMP1 in CD138- non-neoplastic cells was associated with CD117 expression in MM cells. Combinatorial analysis of LMP1 and CD117 stratified patients into good prognostic group LMP1+/CD117- (mean survival 4.16 ± 0.39 years) and a worst prognostic group; LMP1-/CD117+ (mean survival 1.02 ± 0.29 years). Our study showed that LMP1 expression in CD138- non-neoplastic cells of BM in MM patients confers a survival advantage

    Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer

    No full text
    BACKGROUNDPD-1 and PD-L1 have been studied interchangeably in the clinic as checkpoints to reinvigorate T cells in diverse tumor types. Data for biologic effects of checkpoint blockade in human premalignancy are limited.METHODSWe analyzed the immunologic effects of PD-L1 blockade in a clinical trial of atezolizumab in patients with asymptomatic multiple myeloma (AMM), a precursor to clinical malignancy. Genomic signatures of PD-L1 blockade in purified monocytes and T cells in vivo were also compared with those following PD-1 blockade in lung cancer patients. Effects of PD-L1 blockade on monocyte-derived DCs were analyzed to better understand its effects on myeloid antigen-presenting cells.RESULTSIn contrast to anti-PD-1 therapy, anti-PD-L1 therapy led to a distinct inflammatory signature in CD14+ monocytes and increase in myeloid-derived cytokines (e.g., IL-18) in vivo. Treatment of AMM patients with atezolizumab led to rapid activation and expansion of circulating myeloid cells, which persisted in the BM. Blockade of PD-L1 on purified monocyte-derived DCs led to rapid inflammasome activation and synergized with CD40L-driven DC maturation, leading to greater antigen-specific T cell expansion.CONCLUSIONThese data show that PD-L1 blockade leads to distinct systemic immunologic effects compared with PD-1 blockade in vivo in humans, particularly manifest as rapid myeloid activation. These findings also suggest an additional role for PD-L1 as a checkpoint for regulating inflammatory phenotype of myeloid cells and antigen presentation in DCs, which may be harnessed to improve PD-L1-based combination therapies.TRIAL REGISTRATIONNCT02784483.FUNDINGThis work is supported, in part, by funds from NIH/NCI (NCI CA197603, CA238471, and CA208328)

    Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples

    No full text
    Epstein-Barr virus (EBV), human herpes virus 4, has been classically associated with infectious mononucleosis, multiple sclerosis and several types of cancers. Many of these diseases show marked geographical differences in prevalence, which points to underlying genetic and/or environmental factors. Those factors may include a different susceptibility to EBV infection and viral copy number among human populations. Since EBV is commonly used to transform B-cells into lymphoblastoid cell lines (LCLs) we hypothesize that differences in EBV copy number among individual LCLs may reflect differential susceptibility to EBV infection. To test this hypothesis, we retrieved whole-genome sequenced EBV-mapping reads from 1,753 LCL samples derived from 19 populations worldwide that were sequenced within the context of the 1000 Genomes Project. An in silico methodology was developed to estimate the number of EBV copy number in LCLs and validated these estimations by real-time PCR. After experimentally confirming that EBV relative copy number remains stable over cell passages, we performed a genome wide association analysis (GWAS) to try detecting genetic variants of the host that may be associated with EBV copy number. Our GWAS has yielded several genomic regions suggestively associated with the number of EBV genomes per cell in LCLs, unraveling promising candidate genes such as CAND1, a known inhibitor of EBV replication. While this GWAS does not unequivocally establish the degree to which genetic makeup of individuals determine viral levels within their derived LCLs, for which a larger sample size will be needed, it potentially highlighted human genes affecting EBV-related processes, which constitute interesting candidates to follow up in the context of EBV related pathologiesThis work was supported by Instituto de Salud Carlos III (ES) (RD07/0060); Spanish Government Grants (BFU2012-38236); Departament d'Innovació, Universitats I Empresa, Generalitat de Catalunya (2014SGR1311); Instituto de Salud Carlos III (PT13/0001/0026); FEDER (Fondo Europeo de Desarrollo Regional)/FSE (Fondo Social Europeo)
    corecore