75 research outputs found

    In house validated UHPLC protocol for the determination of the total hydroxytyrosol and tyrosol content in virgin olive oil fit for the purpose of the health claim introduced by the EC Regulation 432/2012 for \u201cOlive oil polyphenols\u201d

    Get PDF
    An ongoing challenge in olive oil analytics is the development of a reliable procedure that can draw the consensus of all interested parties regarding the quantification of concentrations above the required minimum value of 5 mg of bioactive "olive oil polyphenols" per 20 g of the oil, to fulfill the health claim introduced by the European Commission (EC) Regulation 432/2012. An in-house validated ultra-high performance liquid chromatography (UHPLC) protocol fit for this purpose is proposed. It relies on quantification of the total hydroxytyrsol (Htyr) and tyrosol (Tyr) content in the virgin olive oil (VOO) polar fraction (PF) before and after acidic hydrolysis of their bound forms. PF extraction and hydrolysis conditions were as previously reported. The chromatographic run lasts ~1/3 of the time needed under high performance liquid chromatography (HPLC) conditions, this was also examined. Eluent consumption for the same piece of information was 6-fold less. Apart from being cost effective, a larger number of samples can be analyzed daily with less environmental impact. Two external curves, detection at 280 nm and correction factors for molecular weight difference are proposed. The method, which is fit for purpose, is selective, robust with satisfactory precision (percentage relative standard deviation (%RSD) values < 11%) and recoveries higher than 87.6% for the target analytes (Htyr, Tyr). Standard operational procedures are easy to apply in the olive oil sector

    Toward a harmonized and standardized protocol for the determination of total hydroxytyrosol and tyrosol content in virgin olive oil (VOO). The pros of a fit for the purpose ultra high performance liquid chromatography (UHPLC) procedure

    Get PDF
    \u3a4oward a harmonized and standardized procedure for the determination of total hydroxytyrosol and tyrosol content in virgin olive oil (VOO), the pros of a recently published in house validated ultra high performance liquid chromatography (UHPLC) protocol are discussed comparatively with those of other procedures that determine directly or indirectly the compounds hosted under the health claim on "olive oil polyphenols" (EC regulation 432/2012). Authentic VOOs were analyzed with five different liquid chromatographic separation protocols and 1H-NMR one in five different laboratories with expertise in VOO phenol analysis within three months. Data comparison indicated differences in absolute values. Method comparison using appropriate tools (Passing-Bablok regression and Bland Altman analyses) for all protocols vs. the UHPLC one indicated slight or statistically significant differences. The results were also discussed in terms of cost effectiveness, detection means, standard requirements and ways to calculate the total hydroxytyrosol and tyrosol content. Findings point out that the in-house validated fit for the purpose UHPLC protocol presents certain pros that should be exploited by the interested parties. These are the simplicity of sample preparation, fast elution time that increase the number of samples analyzed per day and integration of well-resolved peaks with the aid of only two commercially available external standards. Importance of correction factors in the calculations is stressed

    Antibacterial mono- and sesquiterpene esters of benzoic acids from Iranian propolis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Propolis (bee glue) has been used as a remedy since ancient times. Propolis from unexplored regions attracts the attention of scientists in the search for new bioactive molecules.</p> <p>Results</p> <p>From Iranian propolis from the Isfahan province, five individual components were isolated: the prenylated coumarin suberosin <b>1</b>, and four terpene esters: tschimgin (bornyl <it>p</it>-hydroxybenzoate) <b>2</b>, tschimganin (bornyl vanillate) <b>3</b>, ferutinin (ferutinol <it>p</it>-hydroxybenzoate) <b>4, </b>and tefernin (ferutinol vanillate) <b>5</b>. All of them were found for the first time in propolis. Compounds <b>2 </b>- <b>5 </b>demonstrated activity against <it>Staphylococcus aureus</it>.</p> <p>Conclusions</p> <p>The results of the present study are consistent with the idea that propolis from unexplored regions is a promising source of biologically active compounds.</p

    Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated.</p> <p>Results</p> <p>Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique.</p> <p>Conclusions</p> <p>The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile.</p

    Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    Get PDF
    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols

    Effect of recovery methods on the oxidative and physical stability of oil body emulsions

    No full text
    Three natural oil body emulsions of a similar fat content (similar to 5%), but differing in their protein composition were obtained from an aqueous maize germ extract. The first was prepared by concentrating the aqueous oil body extract with ultrafiltration to a fat content of similar to 5%. The other two were prepared by initially recovering the oil bodies from the extract by centrifugation, either in the presence of sucrose or by applying isoelectric precipitation at pH 5.0 and then diluting the resulting oil body creams with deionized water. The oxidative and physical stability of the three emulsions, either as they were or after submission to thermal treatment (100 degrees C for 15 min), were studied following storage at 45 degrees C. The emulsions differed both in their oxidative and physical stability, depending on the recovery method that in turn influenced their continuous phase and/or interfacial membrane protein and/or polar antioxidant composition. Ultrafiltration resulted in the most stable emulsion. Mixtures of the natural oil body emulsions with green tea extracts, aiming to serve as a base for functional beverages, were then prepared and studied for their creaming behaviour. The green tea polyphenols seem to interact with the oil bodies leading to intensive dispersion destabilisation which, however, was halted following carrageenan addition at a relatively very low level. (C) 2013 Elsevier Ltd. rights reserved

    Syringa oblata Lindl var. alba as a source of oleuropein and related compounds

    No full text
    The leaf methanol extract of Syringa oblata Lindl var. alba was investigated as a source of oleuropein and related compounds. The extract had a high total phenol content and a radical scavenging activity similar to that of the respective extract from Olea europaea leaves. HPLC-DAD characterisation of the two most abundant phenolic compounds in the extract of S. oblata indicated that both had UV spectra matching that of oleuropein. The presence of oleuropein was verified by using LC-MS. Identification of the second compound was only feasible after isolation (preparative HPLC) and spectroscopic characterisation [LC-MS, 1H NMR and homonuclear two-dimensional correlated spectroscopy (COSY)]. The compound identified was the known bioactive syringopicroside. On the basis of MS data other peaks were assigned to oleuropein aglycone, verbascoside, ligstroside and syringopicroside derivatives, as well as to a luteolin rutinoside. The findings are promising for the potential exploitation of S. oblata leaf extract as a source for oleuropein and other bioactive ingredient
    corecore