89 research outputs found

    Dinuclear Copper(I) Complexes Supported by Bis‐Tridentate N‐Donor‐Ligands: Turning‐On Tyrosinase Activity

    Get PDF
    Four structurally related bis-tridentate N-donor ligands with either two secondary amine or two imine functions were synthesized, and the corresponding dicopper(I) complexes were investigated as catalysts for the tyrosinase-like conversion of 2,4-di-tert-butylphenol (DTBP-H) to 3,5-di-tert-butylquinone (DTBQ). Notably, the imine systems show evidence for both a ÎŒ-η2 : η2-peroxo-dicopper(II) species and catalytic conversion of DTBP-H to DTBQ. Moreover, kinetic studies indicate that a dinuclear copper-oxygen species is involved in the monooxygenation of DTBP-H. In contrast, the amine systems do not show monooxygenase activity. Comparison of the experimentally determined catalytic activities with DFT-optimized geometries of ÎŒ-η2 : η2-peroxo-dicopper(II) intermediates suggests that the ligand rigidity of the imine systems allows equatorial attack of the substrate and, thus, subsequent monooxygenation whereas this is not possible in the amine systems due to the fact that no free equatorial positions are available in the ÎŒ-peroxo intermediate

    Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins

    Get PDF
    Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion

    Systematic and In Situ Energy Dispersive X-ray Diffraction Investigations on the Formation of Lanthanide Phosphonatobutanesulfonates: Ln(O3P−C4H8−SO3)(H2O)\mathrm{Ln(O_3P-C_4H_8-SO_3)(H_2O)} (Ln = La-Gd)

    No full text
    Using the flexible linker H(2)O(3)P-C(4)H(8)-SO(3)H (H(3)L) and rare earth ions Ln(3+) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) we were able to synthesize the new isostructural inorganic organic hybrid compounds Ln(O(3)P-C(4)H(8)-SO(3))(H(2)O). High-throughput experiments were employed to study the influence of the molar ratios Ln:H(3)L and pH on the product formation. The crystal structure of the compounds Sm(O(3)P-C(4)H(8)-SO(3))(H(2)O) (1) and Pr(O(3)P-C(4)H(8)-SO(3))(H(2)O) (2) were determined by single crystal diffraction. The structures are built up from chains of edge-sharing LnO(8)-polyhedra that are connected by the phosphonate and sulfonate groups into layers. These layers are linked by the -(CH(2))(4)- group to form a three-dimensional framework. The synthesis of compound 1 was scaled up in a conventional oven as well as in a microwave reactor system. A modification of a microwave reactor system allowed its integration into the beamline F3 at HASYLAB, DESY, Hamburg. The crystallization was investigated in situ by means of energy dispersive X-ray diffraction using conventional as well as microwave heating methods applying temperatures varying from 110 to 150 °C. The formation of Sm(O(3)P-C(4)H(8)-SO(3))(H(2)O) takes place in two steps. In the first step a crystalline intermediate was observed, which transforms completely into compound 1. The method by Sharp and Hancock was used to determine the rate constants, reaction exponents, and the Arrhenius activation energy for both reaction steps. Comparing both heating methods, microwave heating leads to fully crystallized reaction product after shorter reaction times, but neither the temperature nor the heating method has significant influence on the induction time
    • 

    corecore