3 research outputs found

    MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4

    Get PDF
    MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. It is significantly elevated in the majority of human tumors and functionally linked to cellular proliferation, survival and migration. In this study, we used two experimental-based strategies to search for novel miR-21 targets. On the one hand, we performed a proteomic approach using two-dimensional differential gel electrophoresis (2D-DIGE) to identify proteins suppressed upon enhanced miR-21 expression in LNCaP human prostate carcinoma cells. The tumor suppressor acidic nuclear phosphoprotein 32 family, member A (ANP32A) (alias pp32 or LANP) emerged as the most strongly downregulated protein. On the other hand, we applied a mathematical approach to select correlated gene sets that are negatively correlated with primary-miR-21 (pri-miR-21) expression in published transcriptome data from 114 B-cell lymphoma cases. Among these candidates, we found tumor suppressor SMARCA4 (alias BRG1) together with the already validated miR-21 target, PDCD4. ANP32A and SMARCA4, which are both involved in chromatin remodeling processes, were confirmed as direct miR-21 targets by immunoblot analysis and reporter gene assays. Furthermore, knock down of ANP32A mimicked the effect of enforced miR-21 expression by enhancing LNCaP cell viability, whereas overexpression of ANP32A in the presence of high miR-21 levels abrogated the miR-21-mediated effect. In A172 glioblastoma cells, enhanced ANP32A expression compensated for the effects of anti-miR-21 treatment on cell viability and apoptosis. In addition, miR-21 expression clearly increased the invasiveness of LNCaP cells, an effect also seen in part upon downregulation of ANP32A. In conclusion, these results suggest that downregulation of ANP32A contributes to the oncogenic function of miR-21

    MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma

    No full text
    Item does not contain fulltextWith approximately 30 000 deaths annually in the United States, prostate cancer (PCa) is a major oncologic disease. Here we show that the microRNAs miR-130a, miR-203 and miR-205 jointly interfere with the two major oncogenic pathways in prostate carcinoma and are downregulated in cancer tissue. Using transcriptomics we show that the microRNAs repress several gene products known to be overexpressed in this cancer. Argonaute 2 (AGO2) co-immunoprecipitation, reporter assays and western blot analysis demonstrate that the microRNAs directly target several components of the mitogen-activated protein kinase (MAPK) and androgen receptor (AR) signaling pathways, among those several AR coregulators and HRAS (Harvey rat sarcoma viral oncogene homolog), and repress signaling activity. Both pathways are central for the development of the primary tumor and in particular the progression to its incurable castration-resistant form. Reconstitution of the microRNAs in LNCaP PCa cells induce morphological changes, which resemble the effect of androgen deprivation, and jointly impair tumor cell growth by induction of apoptosis and cell cycle arrest. We therefore propose that these microRNAs jointly act as tumor suppressors in prostate carcinoma and might interfere with progression to castration resistance

    Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults

    No full text
    Over the past decades, the prevalence of asthma, allergic disease and atopy has increased significantly and in parallel with the increased use of products and materials emitting volatile organic compounds (VOCs) in the indoor environment. The purpose of this review is to examine the evidence of the relationship between quantitatively measured domestic exposure to VOCs and allergic diseases and allergy in children and adults. Sources, potential immune-inflammatory mechanisms and risks for development and severity of asthma and allergy have been addressed. Available evidence is based on studies that have mainly used observational designs of variable quality. Total, aromatic, aliphatic, microbial VOCs and aldehydes have been the most widely investigated VOC classes, with formaldehyde being the most commonly examined single compound. Overall, the evidence is inadequate to draw any firm conclusions. However, given indicative evidence from a few high-quality studies and significant potential for improvements in asthma outcomes in those with established disease, there is a need to consider undertaking further investigation of the relationship between domestic VOC exposure and asthma/allergy outcomes that should encompass both high-quality, robust observational studies and ultimately clinical trials assessing the impact of interventions that aim to reduce VOC exposure in children and adults with asthma
    corecore