822 research outputs found

    Analysis of the X-ray Emission of Nine Swift Afterglows

    Full text link
    The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a steep t^{-3.0 \pm 0.3} decay until ~400 s, followed by a significantly slower t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets, and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave, to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t^{1.0+/-0.5}, is required for five afterglows and could be at work in the other four as well. Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with an universal value.Comment: 10 pages, minor changes, to be published in the MNRA

    Time lag between prompt optical emission and gamma-rays in GRBs

    Full text link
    The prompt optical emission contemporaneous with the γ\gamma-rays from γ\gamma-ray bursts (GRBs) carries important information on the central engine and explosion mechanism. We study the time lag between prompt optical emission and γ\gamma-rays in GRB 990123 and GRB 041219a, which are the only two GRBs had been detected at optical wavelengths during the ascending burst phase. Assuming profiles of prompt optical light curves are the same as the prompt γ\gamma-rays, we simulate optical light curves with different time lags and compare them with the observed optical flux. Then the best fit time lag and its error are determined by chi-squared values. We find that time lags between prompt optical emission and γ\gamma-rays in GRB host galaxy rest-frames are consistent in the two GRBs, which is 575\sim7 s for GRB 990123 and 151\sim5 s for GRB 041219a. This result is consistent with a common origin of prompt optical and γ\gamma-ray emissions in the two GRBs. Based on synchrotron cooling model, we also derive the parameters for the two GRBs.Comment: 4 pages, 3 figures; accepted for publication in A&

    COBE Observations of the Microwave Counterparts of Gamma Ray Bursts

    Get PDF
    We have used the data from the COBE satellite to search for delayed microwave emission (31 - 90 GHz) from Gamma Ray Bursts (GRBs). The large 77^\circ beam of COBE is well matched to the large positional uncertainties in the GRB locations, although it also means that fluxes from (point source) GRB objects will be diluted. In view of this we are doing a statistical search of the GRBs which occurred during the currently released COBE DMR data (years 1990 and 1991), which overlap 200\sim 200 GRBs recorded by GRO. Here we concentrate on just the top 10 GRBs (in peak counts/second). We obtain the limits on the emission by comparing the COBE fluxes before and after the GRB at the GRB location. Since it is thought that the microwave emission should lag the GRB event, we have searched the GRB position for emission in the few months following the GRB occurrence.Comment: 5 pages, LaTE

    Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates

    Full text link
    We investigate the effect of non-evaporating primordial black holes (PBHs) on the ionization and thermal history of the universe. X-rays emitted by gas accretion onto PBHs modify the cosmic recombination history, producing measurable effects on the spectrum and anisotropies of the Cosmic Microwave Background (CMB). Using the third-year WMAP data and FIRAS data we improve existing upper limits on the abundance of PBHs with masses >0.1 Msun by several orders of magnitude. Fitting WMAP3 data with cosmological models that do not allow for non-standard recombination histories, as produced by PBHs or other early energy sources, may lead to an underestimate of the best-fit values of the amplitude of linear density fluctuations (sigma_8) and the scalar spectral index (n_s). Cosmological parameter estimates are affected because models with PBHs allow for larger values of the Thomson scattering optical depth, whose correlation with other parameters may not be correctly taken into account when PBHs are ignored. Values of tau_e=0.2, n_s=1 and sigma_8=0.9 are allowed at 95% CF. This result that may relieve recent tension between WMAP3 data and clusters data on the value of sigma_8. PBHs may increase the primordial molecular hydrogen abundance by up to two orders of magnitude, this promoting cooling and star formation. The suppression of galaxy formation due to X-ray heating is negligible for models consistent with the CMB data. Thus, the formation rate of the first galaxies and stars would be enhanced by a population of PBHs.Comment: 17 pages (Apj style), 9 figures, submitted to Ap

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    Variability in GRBs - A Clue

    Full text link
    We show that external shocks cannot produce a variable GRB, unless they are produced by an extremely narrow jets (angular opening of < ~10^{-4}) or if only a small fraction of the shell emits the radiation and the process is very inefficient. Internal shocks can produce the observed complex temporal structure provided that the source itself is variable. In this case, the observed temporal structure reflects the activity of the ``inner engine'' that drives the bursts. This sets direct constraints on it.Comment: 15 page latex file with 5 PS figure. Complete uuencoded compressed PS file is available at ftp://shemesh.fiz.huji.ac.il or at http://shemesh.fiz.huji.ac.il/papers/SaP_aclue.u

    An accretion model for the growth of the central black hole associated with ionization instability in quasars

    Get PDF
    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy.The mass ratio between black hole and its host galactic bulge is a nature consequence of our model.Comment: submitted to ApJ, 15 page

    Dark Matter: Introduction

    Full text link
    This short review was prepared as an introduction to the Royal Society's 'Dark Matter' conference. It addresses the embarrassing fact that 95% of the universe is unaccounted for. Favoured dark matter candidates are axions or weakly-interacting particles that have survived from the very early universe, but more exotic options cannot be excluded. Experimental searches are being made for the 'dark' particles but we have indirect clues to their nature too. Comparisons of data (from, eg, gravitational lensing) with numerical simulations of galaxy formation can constrain (eg) the particle velocities and collision cross sections. The mean cosmic density of dark matter (plus baryons) is now pinned down to be only about 30% of the critical density However, other recent evidence -- microwave background anisotropies, complemented by data on distant supernovae -- reveals that our universe actually is 'flat', and that its dominant ingredient (about 70% of the total mass-energy) is something quite unexpected -- 'dark energy' pervading all space, with negative pressure. We now confront two mysteries: (i) Why does the universe have three quite distinct basic ingredients -- baryons, dark matter and dark energy -- in the proportions (roughly) 5%, 25% and 70%? (ii) What are the (almost certainly profound) implications of the 'dark energy' for fundamental physics?Comment: 10 pages, 1 figure. Late

    Relativistic kinetic equation for Compton scattering of polarized radiation in strong magnetic field

    Full text link
    We derive the relativistic kinetic equation for Compton scattering of polarized radiation in strong magnetic field using the Bogolyubov method. The induced scattering and the Pauli exclusion principle are taken into account. The electron polarization is also considered in the general form of the kinetic equation. The special forms of the equation for the cases of the non-polarized electrons, the rarefied electron gas and the two polarization mode description of radiation are found. The derived equations are valid for any photon and electron energies and the magnetic field strength below about 10^{16} G. These equations provide the basis for formulation of the equation for polarized radiation transport in atmospheres and magnetospheres of strongly magnetized neutron stars.Comment: 23 pages, accepted for publication in Phys. Rev.
    corecore