2,502 research outputs found

    On the Chinese Exchange Rate Regime: an Attempt to Flexibility during 2015

    Get PDF
    This study will demonstrate, through an econometric and asset allocation approach, if and how the Chinese exchange rate regime was changing during 2015. Particularly, China to improve its exchange rate formation system implemented, during July and August 2015, three depreciation as a step toward a market-oriented exchange rate. This situation, along with the new right of the RMB to be an international currency in SDR should generate a loss of weight about the USD in the Chinese basket peg. For this reason, moving from Frankel-Wei’s basic econometric model - but with some appropriate changes - our objective is to verify if the Chinese monetary policy about the exchange rate has affected the inner balance of the Chinese basket-peg leading it towards a flexible exchange rate regime

    Quantum Spin Hall Effect in Graphene

    Full text link
    We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the quantized transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are non chiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder and symmetry breaking fields are discussed.Comment: 4 pages, published versio

    Nanotube Piezoelectricity

    Full text link
    We combine ab initio, tight-binding methods and analytical theory to study piezoelectric effect of boron nitride nanotubes. We find that piezoelectricity of a heteropolar nanotube depends on its chirality and diameter and can be understood starting from the piezoelectric response of an isolated planar sheet, along with a structure specific mapping from the sheet onto the tube surface. We demonstrate that coupling between the uniaxial and shear deformation are only allowed in the nanotubes with lower chiral symmetry. Our study shows that piezoelectricity of nanotubes is fundamentally different from its counterpart in three dimensional (3D) bulk materials.Comment: 4 pages, with 3 postscript figures embedded. Uses REVTEX4 macros. Also available at http://www.physics.upenn.edu/~nsai/preprints/bn_piezo/index.htm

    The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model

    Get PDF
    Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork

    Common path interference in Zener tunneling is a universal phenomenon

    Full text link
    We show that the probability of electric field induced interband tunneling in solid state systems is generically a non-monotonic (oscillatory) function of the applied field. This unexpected behavior can be understood as arising due to a common path interference between two distinct tunneling solutions. The phenomenon is insensitive to magnetic field, and arises whenever the low energy dispersion relation contains higher order terms in addition to the usual p2p^2 term. Such higher order terms are generically present, albeit with small co-efficient, so that the oscillatory Zener tunneling is a universal phenomenon. However, the first `Zener oscillation' occurs at a transmission probability which is exponentially small when the co-efficient of the higher order terms is small. This explains why this oscillatory aspect of Zener tunneling has been hitherto overlooked, despite its universality. The common path interference is also destroyed by the presence of odd powers of pp in the low energy dispersion relation. Since odd powers of pp are strictly absent only when the tunneling barrier lies along an axis of mirror symmetry, it follows that the robustness of the oscillatory behavior depends on the orientation of the tunneling barrier. Bilayer graphene is identified as a particularly good material for observation of common path interference, due to its unusual nearly isotropic dispersion relation, where the p4p^4 term makes the leading contribution

    Enhanced self-field critical current density of nano-composite YBa(2)Cu(3)O(7) thin films grown by pulsed-laser deposition

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ EPLA, 2008.Enhanced self-field critical current density Jc of novel, high-temperature superconducting thin films is reported. Layers are deposited on (001) MgO substrates by laser ablation of YBa2Cu3O7−ή(Y-123) ceramics containing Y2Ba4CuMOx (M-2411, M=Ag, Nb, Ru, Zr) nano-particles. The Jc of films depends on the secondary-phase content of the ceramic targets, which was varied between 0 and 15 mol%. Composite layers (2 mol% of Ag-2411 and Nb-2411) exhibit Jc values at 77 K of up to 5.1 MA/cm2, which is 3 to 4 times higher than those observed in films deposited from phase pure Y-123 ceramics. Nb-2411 grows epitaxially in the composite layers and the estimated crystallite size is ~10 nm.The Austrian Science Fund, the Austrian Federal Ministry of Economics and Labour, the European Science Foundation and the Higher Education Commission of Pakistan

    Plasmon reflections by topological electronic boundaries in bilayer graphene

    Full text link
    Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local ac conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contain additional confined bands which produce a structure-specific contrast of the local conductivity. The calculated plasmonic interference profiles are in quantitative agreement with our experiments.Comment: 14 pages, 5 figure

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Re – Training Needs of Mechanical Engineering Technologists for Improved Performance in Scientific Equipment Development Institutes in Nigeria.

    Get PDF
    Following constant complains by our schools on short falls in the supply of laboratory apparatus and even when available they are sub – standard, this study was conducted to determine the re-training needs of mechanical engineering technologists who are directly involved in the production of these laboratory apparatus  for improved performance in Scientific Equipment Development Institutes (SEDI) in Nigeria. Two research questions and 2 hypotheses were formulated to guide the study. The study was conducted in the two Scientific Development Institutes located at Minna and Enugu. A survey research design approach was adopted. The entire population of 82 mechanical engineers and 140 mechanical engineering technologists served as the respondents. No sampling was done. A 50 item structured questionnaire was used to collect the relevant data for the study. Data collected were analyzed using frequency counts, standard deviation, mean and t – test statistics. Results from analysis of data showed that all the 50 proposed items were accepted as retraining needs of mechanical engineering technologists. Specifically, the study revealed that the technologists were most deficient in areas of the use of automatic, NC, and CNC machines. It was recommended that as a matter of urgency government should put in place various strategies of retraining such as partnership with production industries, workshops, seminars and short term trainings outside the country. Key words: Re-training, performance, technologists, industries, scientific equipmen
    • 

    corecore