5,882 research outputs found

    Challenges for the National Institute for Clinical Excellence

    Get PDF
    Rationing health care is inevitable, and NICE should inform NHS decision making. Adoption of new technologies by NHS clinicians should be informed by costs as well as effectiveness. The NHS needs better information from NICE on the equity implications of new and existing technologies. NICE appraisal should focus not only on service enhancement but also on withdrawal of existing ineffective or inefficient therapies. Giving NICE a real budget to fund its recommendations would encourage it to examine the effect of its decisions on the whole NHS

    Electric field measurements across the harang discontinuity

    Get PDF
    The Harang discontinuity, the area separating the positive and negative bay regions in the midnight sector of the auroral zone, is a focal point for changes in behavior of many phenomena. Through this region the electric field rotates through the west from a basically northward field in the positive bay region to a basically southward field in the negative bay region, appearing as a reversal in a single axis measurement; 32 of these reversals have been identified in the OGO-6 data from November and December, 1969. The discontinuity is dynamic in nature, moving southward and steepening its latitudinal profile as magnetic activity is increased. As activity decreases it relaxes poleward and spreads out in latitudinal width. It occurs over several hours of magnetic local time. The boundary in the electric field data is consistent with the reversal of ground magnetic disturbances from a positive to negative bay condition. The discontinuity is present in the electric field data both during substorms and during quiet times and appears to define a pattern on which other effects can occur

    Preliminary results of measurements of sq currents and the equatorial electrojet near peru

    Get PDF
    Measurement of electric current, magnetic field, and electron density in ionosphere using Nike-Apache sounding rocket

    Electric fields in the ionosphere and magnetosphere

    Get PDF
    Electric field measuring techniques used in ionospheric and magnetospheric electrojet current studie

    Early results from ISEE-A electric field measurements

    Get PDF
    In the solar wind and in middle latitude regions of the magnetosphere, spacecraft sheath fields obscure the ambient field under low plasma flux conditions such that valid measurements are confined to periods of moderately intense flux. Initial results show: (1) that the DC electric field is enhanced by roughly a factor of two in a narrow region at the front, increasing B, edge of the bow shock, (2) that scale lengths for large changes in E at the subsolar magnetopause are considerably shorter than scale lengths associated with the magnetic structure of the magnetopause, and (3) that the transverse distribution of B-aligned E-fields between the outer magnetosphere and ionospheric levels must be highly complex to account for the random turbulent appearance of the magnetospheric fields and the lack of corresponding time-space variations at ionospheric levels. Spike-like, non-oscillatory, fields lasting less than 0.2 seconds are occasionally seen at the bow shock and at the magnetopause and also intermittently appear in magnetosheath and plasma sheet regions under highly variable field conditions

    Ionospheric and magnetospheric plasmapauses'

    Get PDF
    During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause

    Micropulsations in the electric field near the plasmapause, observed by ISEE-1

    Get PDF
    The occurrence of micropulsations near and inside the plasmapause was surveyed. The observed pulsations, classified as Pc3 and Pi2, are discussed. In addition one single event of Pc1 was observed. The frequencies in the Pc3 and Pi2 bands, the amplitude ranges, and the direction of rotation for the electric field vector are reported

    Isolated cold plasma regions: Observations and their relation to possible production mechanisms

    Get PDF
    Regions of enhanced cold plasma, isolated from the main plasmasphere along the Explorer 45 orbit on the equatorial plane, are reported using the sheath induced potentials seen by the electric field experiment. The occurrence of these regions has a strong correlation with negative enhancements of Dst, and their locations are primarily in the noon-dusk quadrant. The data support the concept that changes in large scale convection play a dominant role in the formation of these regions. Plasmatails that are predicted from enhancements of large scale convection electric fields in general define where these regions may be found. More localized processes are necessary to account for the exact configuration and structure seen in these regions and may eventually result in detachment from the main plasmasphere

    The plasmapause revisited

    Get PDF
    Saturation of the dc double probe instrument on Explorer 45 was used to identify the plasmapause. A data base was developed to statistically study the average position of the plasmapause over 14.5 hours of magnetic local time under differing magnetic conditions. The afternoon-evening bulge in the L coordinate of the plasmapause versus local time was found centered between 20 and 21 hours MLT during magnetically quiet periods and shifted toward dusk as activity increased, but always post dusk. During quiet periods a bulge in the L coordinate near noon was also seen, which disappeared as activity increased. The average local time distribution plasmapause position during high magnetic activity was irregular in the afternoon region where large scale convection models predict the creation of plasmatails or detached plasma regions from increases in the solar wind induced convection. The results suggest that solar wind induced convection is partially shielded from the dayside. As the intensity of the convection is increased, it more effectively penetrates the dayside, which shifts the post dusk bulge nearer to dusk and eliminates the quiet-time bulge near noon
    corecore