163 research outputs found

    Axisymmetric Magnetorotational Instability in Viscous Accretion Disks

    Full text link
    Axisymmetric magnetorotational instability (MRI) in viscous accretion disks is investigated by linear analysis and two-dimensional nonlinear simulations. The linear growth of the viscous MRI is characterized by the Reynolds number defined as RMRIvA2/νΩR_{\rm MRI} \equiv v_A^2/\nu\Omega , where vAv_A is the Alfv{\'e}n velocity, ν\nu is the kinematic viscosity, and Ω\Omega is the angular velocity of the disk. Although the linear growth rate is suppressed considerably as the Reynolds number decreases, the nonlinear behavior is found to be almost independent of RMRIR_{\rm MRI}. At the nonlinear evolutionary stage, a two-channel flow continues growing and the Maxwell stress increases until the end of calculations even though the Reynolds number is much smaller than unity. A large portion of the injected energy to the system is converted to the magnetic energy. The gain rate of the thermal energy, on the other hand, is found to be much larger than the viscous heating rate. Nonlinear behavior of the MRI in the viscous regime and its difference from that in the highly resistive regime can be explained schematically by using the characteristics of the linear dispersion relation. Applying our results to the case with both the viscosity and resistivity, it is anticipated that the critical value of the Lundquist number SMRIvA2/ηΩS_{\rm MRI} \equiv v_A^2/\eta\Omega for active turbulence depends on the magnetic Prandtl number SMRI,cPm1/2S_{{\rm MRI},c} \propto Pm^{1/2} in the regime of Pm1Pm \gg 1 and remains constant when Pm1Pm \ll 1, where PmSMRI/RMRI=ν/ηPm \equiv S_{\rm MRI}/R_{\rm MRI} = \nu/\eta and η\eta is the magnetic diffusivity.Comment: Accepted for publication in ApJ -- 18 pages, 9 figures, 1 tabl

    Nonaxisymmetric Magnetorotational Instability in Proto-Neutron Stars

    Full text link
    We investigate the stability of differentially rotating proto-neutron stars (PNSs) with a toroidal magnetic field. Stability criteria for nonaxisymmetric MHD instabilities are derived using a local linear analysis. PNSs are expected to have much stronger radial shear in the rotation velocity compared to normal stars. We find that nonaxisymmetric magnetorotational instability (NMRI) with a large azimuthal wavenumber mm is dominant over the kink mode (m=1m=1) in differentially rotating PNSs. The growth rate of the NMRI is of the order of the angular velocity Ω\Omega which is faster than that of the kink-type instability by several orders of magnitude. The stability criteria are analogous to those of the axisymmetric magnetorotational instability with a poloidal field, although the effects of leptonic gradients are considered in our analysis. The NMRI can grow even in convectively stable layers if the wavevectors of unstable modes are parallel to the restoring force by the Brunt-V\"ais\"al\"a oscillation. The nonlinear evolution of NMRI could amplify the magnetic fields and drive MHD turbulence in PNSs, which may lead to enhancement of the neutrino luminosity.Comment: 24pages, 7figures, Accepted for publication in the Astrophysical Journal (December 12, 2005

    Dead Zone Formation and Nonsteady Hyperaccretion in Collapsar Disks : A Possible Origin of Short-Term Variability in the Prompt Emission of Gamma-Ray Bursts

    Get PDF
    The central engine of gamma-ray bursts (GRBs) is believed to be a hot and dense disk with hyperaccretion onto a few solar-mass black hole. We investigate where the magnetorotational instability (MRI) actively operates in the hyperaccretion disk, which can cause angular momentum transport in the disk. The inner region of hyperaccretion disks can be neutrino opaque, and the energy- and momentum-transport by neutrinos could affect the growth of the MRI significantly. Assuming reasonable disk models and a weak magnetic field B1014GB \lesssim 10^{14} \rm{G}, it is found that the MRI is strongly suppressed by the neutrino viscosity in the inner region of hyperaccretion disks. On the other hand, the MRI can drive active MHD turbulence in the outer neutrino-transparent region regardless of the field strength. This suggests that the baryonic matter is accumulated into the inner dead zone where the MRI grows inactively and the angular momentum transport is inefficient. When the dead zone gains a large amount of mass and becomes gravitationally unstable, intense mass accretion onto the central black hole would occur episodically through the gravitational torque. This process can be a physical mechanism of the short-term variability in the prompt emission of GRBs. Finally, the origin of flaring activities in the X-ray afterglow is predicted in the context of our episodic accretion scenario.Comment: 11pages, 4figures. Accepted for publication in the Astrophysical Journa

    A variable absorption feature in the X-ray spectrum of a magnetar

    Get PDF
    Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of AXPs and SGRs are greater than - or at the high end of the range of - those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2E14 gauss to more than 1E15 gauss.Comment: Nature, 500, 312 (including Supplementary Information

    Direct dark matter search by annual modulation in XMASS-I

    Get PDF
    A search for dark matter was conducted by looking for an annual modulation signal due to the Earth's rotation around the Sun using XMASS, a single phase liquid xenon detector. The data used for this analysis was 359.2 live days times 832 kg of exposure accumulated between November 2013 and March 2015. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, the exclusion upper limit of the WIMP-nucleon cross section 4.3×\times1041^{-41}cm2^2 at 8 GeV/c2^2 was obtained and we exclude almost all the DAMA/LIBRA allowed region in the 6 to 16 GeV/c2^2 range at \sim1040^{-40}cm2^2. The result of a simple modulation analysis, without assuming any specific dark matter model but including electron/γ\gamma events, showed a slight negative amplitude. The pp-values obtained with two independent analyses are 0.014 and 0.068 for null hypothesis, respectively. we obtained 90\% C.L. upper bounds that can be used to test various models. This is the first extensive annual modulation search probing this region with an exposure comparable to DAMA/LIBRA.Comment: 5 pages, 4 figure

    Magnetic Reconnection in Extreme Astrophysical Environments

    Full text link
    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfv\'en transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic reconnection). Article is based on an invited review talk at the Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA; February 8-12, 2010). 30 pages, no figure

    Unusual Central Engine Activity in the Double Burst GRB 110709B

    Full text link
    The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.Comment: 10 pages, 14 figures, 2 tables. ApJ accepte

    Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties

    Get PDF
    Background: α-glucosidase is a therapeutic target for diabetes mellitus (DM) and α-glucosidase inhibitors play a vital role in the treatments for the disease. Furthermore, xanthine oxidase (XO) is a key enzyme that catalyzes hypoxanthine and xanthine to uric acid which at high levels can lead to hyperuricemia which is an important cause of gout. Pancreatic lipase (PL) secreted into the duodenum plays a key role in the digestion and absorption of fats. For its importance in lipid digestion, PL represents an attractive target for obesity prevention. Methods: The flowers essential oil of Rhaponticum acaule (L) DC (R. acaule) was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activities of R. acaule essential oil (RaEO) were also determined using 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power, phosphomolybdenum, and DNA nicking assays. The inhibitory power of RaEO against α-glucosidase, xanthine oxidase and pancreatic lipase was evaluated. Enzyme kinetic studies using Michaelis-Menten and the derived Lineweaver-Burk (LB) plots were performed to understand the possible mechanism of inhibition exercised by the components of this essential oil. Results: The result revealed the presence of 26 compounds (97.4%). The main constituents include germacrene D (49.2%), methyl eugenol (8.3%), (E)-β-ionone (6.2%), β-caryophyllene (5.7%), (E,E)-α-farnesene (4.2%), bicyclogermacrene (4.1%) and (Z)-α-bisabolene (3.7%). The kinetic inhibition study showed that the essential oil demonstrated a strong α-glucosidase inhibiton and it was a mixed inhibitor. On the other hand, our results evidenced that this oil exhibited important xanthine oxidase inhibitory effect, behaving as a non-competitive inhibitor. The essential oil inhibited the turkey pancreatic lipase, with maximum inhibition of 80% achieved at 2 mg/mL. Furthermore, the inhibition of turkey pancreatic lipase by RaEO was an irreversible one. Conclusion: The results revealed that the RaEO is a new promising potential source of antioxidant compounds, endowed with good practical applications for human health. Keywords: α-glucosidase, Antioxidant activity, Chemical composition, Pancreatic lipase inhibition, Rhaponticum acaule essential oil, Xanthine oxidase
    corecore