50 research outputs found

    A Mitochondrial Kinase Complex Is Essential to Mediate an ERK1/2-Dependent Phosphorylation of a Key Regulatory Protein in Steroid Biosynthesis

    Get PDF
    ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein –a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser232. Directed mutagenesis of Ser232 to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined

    Fifth European Dirofilaria and Angiostrongylus Days (FiEDAD) 2016

    Get PDF
    Peer reviewe

    Experimental Infection of Sheep at 45 and 60 Days of Gestation with Schmallenberg Virus Readily Led to Placental Colonization without Causing Congenital Malformations.

    No full text
    &lt;p&gt;&lt;b&gt;BACKGROUND: &lt;/b&gt;Main impact of Schmallenberg virus (SBV) on livestock consists in reproductive disorders, with teratogenic effects, abortions and stillbirths. SBV pathogenesis and viral placental crossing remain currently poorly understood. Therefore, we implemented an experimental infection of ewes, inoculated with SBV at 45 or 60 days of gestation (dg).&lt;/p&gt;&lt;p&gt;&lt;b&gt;METHODOLOGY: &lt;/b&gt;&quot;Mourerous&quot; breed ewes were randomly separated in three groups: eight and nine ewes were subcutaneously inoculated with 1 ml of SBV infectious serum at 45 and 60 dg, respectively (G45 and G60). Six other ewes were inoculated subcutaneously with sterile phosphate buffer saline as control group. All SBV inoculated ewes showed RNAemia consistent with previously published studies, they seroconverted and no clinical sign was reported. Lambs were born at term via caesarian-section, and right after birth they were blood sampled and clinically examined. Then both lambs and ewes were euthanatized and necropsied.&lt;/p&gt;&lt;p&gt;&lt;b&gt;PRINCIPAL FINDINGS/SIGNIFICANCE: &lt;/b&gt;No lambs showed any malformation suggestive of SBV infection and none of them had RNAemia or anti-SBV antibodies prior to colostrum uptake. Positive SBV RNA detection in organs was rare in both G45 and G60 lambs (2/11 and 1/10, respectively). Nevertheless most of the lambs in G45 (9/11) and G60 (9/10) had at least one extraembryonic structure SBV positive by RTqPCR. The number of positive extraembryonic structures was significantly higher in G60 lambs. Time of inoculation (45 or 60 dg) had no impact on the placental colonization success rate but affected the frequency of detecting the virus in the offspring extraembryonic structures by the time of lambing. SBV readily colonized the placenta when ewes were infected at 45 or 60 dg but infection of the fetuses was limited and did not lead to congenital malformations.&lt;/p&gt;</p

    Genetically stable infectious Schmallenberg virus persists in foetal envelopes of pregnant ewes

    Get PDF
    &lt;p&gt;Schmallenberg virus (SBV) is a recently emerged vector-borne virus, inducing congenital defects in bovines, ovines and caprines. Here we have shown that infectious SBV is capable of persisting until the moment of birth in the foetal envelopes of ewes infected with SBV-infectious serum at day 45 (1/5 positive) and 60 (4/6 positive) of gestation. This persistence of at least 100 days is a new aspect of the SBV pathogenesis that could help to explain how SBV overwinters the cold season in temperate climate zones. Furthermore, sequencing of the M segment shows that the persisting virus in the foetal envelopes is genetically stable since only a few mutations compared to the inoculum were found. This supports the hypothesis that persisting virus could start the infection of new hosts. Finally, neutralization tests showed that infectious SBV present in the foetal envelopes at birth can be neutralized by the humoral immunity present in the infected ewes.&lt;/p&gt;</p
    corecore