395 research outputs found

    E-PHARMACY IMPACTS ON SOCIETY AND PHARMA SECTOR IN ECONOMICAL PANDEMIC SITUATION: A REVIEW

    Get PDF
    Four month ago, nobody knows about covid-19 but now this virus has spread to almost every country, infecting at least 3,062515 people and death approx 211449 people with badly impact on economies of the most countries and also broken their health-care systems. At this time covid-19 disease is almost spreading all over the world and society. Majorly Pharmacy services act as a pillar at this pandemic situation for the public health. China is the first country where covid-19 outbreak started and some current data of consumer behavior and their habits are showed that society take some safe and preventive measures during lockdown and social distancing time which increase growth of ecommerce demand is inevitable. Now a day’s e-pharmacy is being adapted because medications can be ordered in a one click and conveniently delivered to customer door step with some risk like misuse of drugs and self-medication especially for those drugs which comes under the schedule H and X. This review paper focus on the basic issues and challenges related to online pharmacy and how can it be beneficial to society and pharma sectors in the pandemic situation.  Keywords:  Online Pharmacy, Internet, Corona virus, Pandemic situation, Pharmaceutical sector

    Unexpected stimulation of mitochondrial ADP-ribosylation by cyanide

    Get PDF
    AbstractCyanide, the classical inhibitor of the mitochondrial respiratory chain at site III, stimulates ADP-ribosylation of a number of mitochondrial proteins, the major protein being the 50–55 kDa band. Sodium azide, sharing the same inhibitory site, does not have the same effect. Rotenone or antimycin A have no influence on mitochondrial ADP-ribosylation. Data suggest that no apparent correlation exists between oxidoreductase function and protein ADP-ribosylation. Purified nuclear poly(ADP-ribose) polymerase activity was not affected by cyanide. The cyanide effect on mitochondrial ADP-ribosylation seems intriguing and may be attributed to NAD+ -CN complex formation, since NAD reacts with cyanide at pH > 8 with N-substituted nicotinamide which may prevent inhibition of ADP-ribosylation

    International advocacy for education and safety

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93654/1/pan12008.pd

    A retrospective description of anesthetic medication dosing in overweight and obese children

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108075/1/pan12396.pd

    Towards Enriching Genomic Resources in Legumes

    Get PDF
    Food legumes, mainly comprising dry beans, dry peas, soybean, chickpea, pigeonpea, groundnut, greengram, blackgram, cowpea, lentil and lathyrus, have considerable area under cultivation globally and these are important constituents of cereal-based vegetarian diets. Keeping in view their tremendous importance for diversification and intensification of contemporary agriculture, systematic efforts towards their genetic improvement have been undertaken with classical breeding tools, lately complemented by the use of genomic tools. These genomic tools provide comprehensive information on genes involved in biochemical pathways leading upto nutritional compounds and can be used to understand the genetics of traits of interest and consequently, helping in marker assisted breeding. During the last two decades powerful genetic and genomic tools such as establishment of genetic and physical maps, expressed sequence tags, bioinformatic tools, genome-wide sequence data, genomic and metabolomic platforms, etc. have been developed for many legume species. These efforts have led to development of large scale molecular markers, identification of various marker trait associations, construction of genetic and linkage maps, expressed sequence tags database, partial or whole genome sequences, physical and molecular maps, DNA chips and bacterial artificial chromosome (BAC) libraries. After the genome sequencing of three model species, Medicago, Lotus and Glycine, draft genome sequences have recently been made available in agronomically important food legumes, pigeonpea and chickpea while similar efforts are underway in groundnut and greengram. The new generation sequencing (NGS) and genotyping platforms such as 454/FLX sequencing and Illumina GoldenGate/Solexa have revolutionized plant genomic research as these generate millions of ESTs per run. With the increased amount of genomic resources, there are now tremendous opportunities to integrate these with the genetic resources for their widespread use in routine legume improvement programmes by integrating them with conventional breeding tools. As a result, the genomics assisted breeding (GAB) can now be successfully used in legume improvement and development of improved genotypes having improved agronomic and quality traits and resistance to biotic and abiotic stresses. This chapter discusses the developments made in development of legume genomics and their role in overall improvement of food legumes

    Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea

    Get PDF
    Fusarium wilt caused by F. oxysporum f. sp. ciceris causes extensive damage to chickpea (Cicer arietinum L.) in many parts of the world. In the central part of India, pathogen race 2 (Foc 2) causes severe yield losses. We initiated molecular marker-assisted backcrossing (MABC) using desi cultivar, Vijay, as a donor to introgress resistance to this race (Foc2) in Pusa 256, another elite desi cultivar of chickpea. To confirm introgression of resistance for this race, foreground selection was undertaken using two SSR markers (TA 37 and TA110), with background selection to observe the recovery of recurrent parent genome using 45 SSRs accommodated in 8 multiplexes. F1 plants were confirmed with molecular markers and backcrossed with Pusa 256, followed by cycles of foreground and background selection at each stage to generate 161 plants in BC3F2 during the period 2009–2013. Similarly, 46 BC3F1 plants were also generated in another set during the same period. On the basis of foreground selection, 46 plants were found homozygotes in BC3F2. Among them, 17 plants recorded >91% background recovery with the highest recovery percentage of 96%. In BC3F1 also, 14 hybrid plants recorded a background recovery of >85% with the highest background recovery percentage of >94%. The identified plants were selfed to obtain 1341 BC3F3 and 2198 BC3F2 seeds which were screened phenotypically for resistance to fusarium wilt (race 2) besides doing marker analysis. Finally, 17 BC3F4 and 11 BC3F3 lines were obtained which led to identification of 5 highly resistant lines of Pusa 256 with Foc 2 gene introgressed in them. Development of these lines will help in horizontal as well as vertical expansion of chickpea in central part of India

    Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3

    Get PDF
    Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time
    • 

    corecore