21 research outputs found

    Prospect and potential of Burkholderia sp. against Phytophthora capsici Leonian: a causative agent for foot rot disease of black pepper

    Get PDF
    Foot rot disease is a very destructive disease in black pepper in Malaysia. It is caused by Phytophthora capsici Leonian, which is a soilborne pathogenic protist (phylum, Oomycota) that infects aerial and subterranean structures of many host plants. This pathogen is a polycyclic, such that multiple cycles of infection and inoculum production occur in a single growing season. It is more prevalent in the tropics because of the favourable environmental conditions. The utilization of plant growth-promoting rhizobacteria (PGPR) as a biological control agent has been successfully implemented in controlling many plant pathogens. Many studies on the exploration of beneficial organisms have been carried out such as Pseudomonas fluorescens, which is one of the best examples used for the control of Fusarium wilt in tomato. Similarly, P. fluorescens is found to be an effective biocontrol agent against the foot rot disease in black pepper. Nowadays there is tremendous novel increase in the species of Burkholderia with either mutualistic or antagonistic interactions in the environment. Burkholderia sp. is an indigenous PGPR capable of producing a large number of commercially important hydrolytic enzymes and bioactive substances that promote plant growth and health; are eco-friendly, biodegradable and specific in their actions; and have a broad spectrum of antimicrobial activity in keeping down the population of phytopathogens, thus playing a great role in promoting sustainable agriculture today. Hence, in this book chapter, the potential applications of Burkholderia sp. to control foot rot disease of black pepper in Malaysia, their control mechanisms, plant growth promotion, commercial potentials and the future prospects as indigenous PGPR were discussed in relation to sustainable agriculture

    Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8

    Get PDF
    In a previous study (Malfanova et al. in Microbial Biotech 4:523-532, 2011), we described the isolation and partial characterization of the biocontrol endophytic bacterium B. subtilis HC8. Using thin-layer chromatography, we have detected several bioactive antifungal compounds in the methanolic extract from the acid-precipitated supernatant of HC8. In the present study, we have further analyzed this methanolic extract using liquid chromatography-mass spectrometry. Based on the comparison of retention times and molecular masses with those of known antifungal compounds, we identified three families of lipopeptide antibiotics. These include four iturins A having fatty acyl chain lengths of C14 to C17, eight fengycins A (from C14 to C18 and from C15 to C17 containing a double bond in the acyl chain), four fengycins B (C15 to C18), and five surfactins (C12 to C16). Evaluation of the antifungal activity of the isolated lipopeptides showed that fengycins are the most active ones. To our knowledge, this is the first report of an endophytic Bacillus subtilis producing all three major families of lipopeptide antibiotics containing a very heterogeneous mixture of homologues. The questions remain open which of these lipopeptides (1) are being produced during interaction with the plant and (2) are contributing to the biocontrol activity of HC8. © 2012 The Author(s)
    corecore