13,838 research outputs found

    Superconductivity in striped and multi-Fermi-surface Hubbard models: From the cuprates to the pnictides

    Full text link
    Single- and multi-band Hubbard models have been found to describe many of the complex phenomena that are observed in the cuprate and iron-based high-temperature superconductors. Simulations of these models therefore provide an ideal framework to study and understand the superconducting properties of these systems and the mechanisms responsible for them. Here we review recent dynamic cluster quantum Monte Carlo simulations of these models, which provide an unbiased view of the leading correlations in the system. In particular, we discuss what these simulations tell us about superconductivity in the homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this behavior. We then describe recent simulations of a bilayer Hubbard model, which provides a simple model to study the type and nature of pairing in systems with multiple Fermi surfaces such as the iron-based superconductors.Comment: Published as part of Superstripes 2011 (Rome) conference proceeding

    Phase Diagram of the Hubbard Model: Beyond the Dynamical Mean Field

    Full text link
    The Dynamical Cluster Approximation (DCA) is used to study non-local corrections to the dynamical mean field phase diagram of the two-dimensional Hubbard model. Regions of antiferromagnetic, d-wave superconducting, pseudo-gapped non-Fermi liquid, and Fermi liquid behaviors are found, in rough agreement with the generic phase diagram of the cuprates. The non-local fluctuations beyond the mean field both suppress the antiferromagnetism and mediate the superconductivity.Comment: 4 pages, 5 eps figures, submitted to PR

    Rotating system for four-dimensional transverse rms-emittance measurements

    Full text link
    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to reduce the projected emittances. A dedicated ROtating System for Emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully determine the four-dimensional beam matrix. This device has been used at the High Charge injector (HLI) at GSI using a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and ROSE. Mathematical algorithms, measurements, and results for ion beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.Comment: 11 pages, 10 figure

    Vaccinations, infections and antibacterials in the first grass pollen season of life and risk of later hayfever

    Get PDF
    Published source: Bremner, S. A., Carey, I. M., DeWilde, S., Richards, N., Maier, W. C., Hilton, S. R., Strachan, D. P. and Cook, D. G. (2007), Vaccinations, infections and antibacterials in the first grass pollen season of life and risk of later hayfever. Clinical & Experimental Allergy, 37: 512–517. doi: 10.1111/j.1365-2222.2007.02697.

    Probably Safe or Live

    Get PDF
    This paper presents a formal characterisation of safety and liveness properties \`a la Alpern and Schneider for fully probabilistic systems. As for the classical setting, it is established that any (probabilistic tree) property is equivalent to a conjunction of a safety and liveness property. A simple algorithm is provided to obtain such property decomposition for flat probabilistic CTL (PCTL). A safe fragment of PCTL is identified that provides a sound and complete characterisation of safety properties. For liveness properties, we provide two PCTL fragments, a sound and a complete one. We show that safety properties only have finite counterexamples, whereas liveness properties have none. We compare our characterisation for qualitative properties with the one for branching time properties by Manolios and Trefler, and present sound and complete PCTL fragments for characterising the notions of strong safety and absolute liveness coined by Sistla

    Laboratory Electronic Spectra of Carbon Chains and Rings

    Get PDF
    Carriers of the diffuse interstellar bands (DIBs) cannot be definitively identified without laboratory spectra. Several techniques, including matrix isolation, cavity ringdown spectroscopy, resonance enhanced multiphoton ionization, and ion trapping, have been used to measure the electronic spectra of carbon chains and their derivatives. The gas-phase laboratory spectra could then be compared to the astronomical data of known DIBs. The choice of molecules studied in the gas phase depends on the presence of strong electronic transitions at optical wavelengths, the lifetimes of excited electronic states, and chemical feasibility in diffuse astrophysical environments. Collisional-radiative rate models have also be used in conjunction with laboratory spectra to predict absorption profiles under interstellar condition
    corecore