84 research outputs found
Generation of a wave packet tailored to efficient free space excitation of a single atom
We demonstrate the generation of an optical dipole wave suitable for the
process of efficiently coupling single quanta of light and matter in free
space. We employ a parabolic mirror for the conversion of a transverse beam
mode to a focused dipole wave and show the required spatial and temporal
shaping of the mode incident onto the mirror. The results include a proof of
principle correction of the parabolic mirror's aberrations. For the application
of exciting an atom with a single photon pulse we demonstrate the creation of a
suitable temporal pulse envelope. We infer coupling strengths of 89% and
success probabilities of up to 87% for the application of exciting a single
atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.
A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies
We have measured differential cross sections for \pp elastic scattering with
internal fiber targets in the recirculating beam of the proton synchrotron
COSY. Measurements were made continuously during acceleration for projectile
kinetic energies between 0.23 and 2.59 GeV in the angular range deg. Details of the apparatus and the data analysis are
given and the resulting excitation functions and angular distributions
presented. The precision of each data point is typically better than 4%, and a
relative normalization uncertainty of only 2.5% within an excitation function
has been reached. The impact on phase shift analysis as well as upper bounds on
possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure
Measurement of Spin Correlation Parameters A, A, and A_ at 2.1 GeV in Proton-Proton Elastic Scattering
At the Cooler Synchrotron COSY/J\"ulich spin correlation parameters in
elastic proton-proton (pp) scattering have been measured with a 2.11 GeV
polarized proton beam and a polarized hydrogen atomic beam target. We report
results for A, A, and A_ for c.m. scattering angles between
30 and 90. Our data on A -- the first measurement of this
observable above 800 MeV -- clearly disagrees with predictions of available of
pp scattering phase shift solutions while A and A_ are reproduced
reasonably well. We show that in the direct reconstruction of the scattering
amplitudes from the body of available pp elastic scattering data at 2.1 GeV the
number of possible solutions is considerably reduced.Comment: 4 pages, 4 figure
Simultaneous measurement of multimode squeezing through multimode phase-sensitive amplification
Multimode squeezed light is increasingly popular in photonic quantum technologies, including sensing, imaging, and computation. Existing methods for its characterization are technically complex, often reducing the level of squeezing and typically addressing only a single mode at a time. Here, for the first time, we employ optical parametric amplification to characterize multiple squeezing eigenmodes simultaneously. We retrieve the shapes and squeezing degrees of all modes at once through direct detection followed by modal decomposition. This method is tolerant to inefficient detection and does not require a local oscillator. For a spectrally and spatially multimode squeezed vacuum, we characterize the eight strongest spatial modes, obtaining squeezing and anti-squeezing values of up to −5.2 ± 0.2 dB and 8.6 ± 0.3 dB, respectively, despite 50% detection loss. This work, being the first exploration of an optical parametric amplifier’s multimode capability for squeezing detection, paves the way for real-time multimode squeezing detection
The photonic wheel - demonstration of a state of light with purely transverse angular momentum
In classical mechanics, a system may possess angular momentum which can be either transverse (e.g. in a spinning wheel) or longitudinal(e.g. for a spiraling seed falling from a tree) with respect to the direction of motion. However, for light, a typical massless wave system,the situation is less versatile. Photons are well-known to exhibit intrinsic angular momentum which is longitudinal only: the spin angularmomentum defining the polarization and the orbital angular momentum associated with a spiraling phase front. Here we show that itis possible to generate a novel state of the light field that contains purely transverse angular momentum, the analogue of a spinningmechanical wheel. We realize this state by tight focusing of a polarization tailored light beam and measure it using an optical nano-probingtechnique. Such a novel state of the light field can find applications in optical tweezers and spanners where it allows for additionalrotational degree of freedom not achievable in single-beam configurations so far
Design of a mode converter for efficient light-atom coupling in free space
In this article, we describe how to develop a mode converter that transforms
a plane electromagnetic wave into an inward moving dipole wave. The latter one
is intended to bring a single atom or ion from its ground state to its excited
state by absorption of a single photon wave packet with near-100% efficiency.Comment: RevTex4, 3 figures, revised version, accepted for publication at
Appl. Phys.
Ion traps with enhanced optical and physical access
Small, controllable, highly accessible quantum systems can serve as probes at
the single quantum level to study multiple physical effects, for example in
quantum optics or for electric and magnetic field sensing. The applicability of
trapped atomic ions as probes is highly dependent on the measurement situation
at hand and thus calls for specialized traps. Previous approaches for ion traps
with enhanced optical access included traps consisting of a single ring
electrode or two opposing endcap electrodes. Other possibilities are planar
trap geometries, which have been investigated for Penning traps and rf-trap
arrays. By not having the electrodes lie in a common plane the optical access
in the latter cases can be substantially increased. Here, we discuss the
fabrication and experimental characterization of a novel radio-frequency (rf)
ion trap geometry. It has a relatively simple structure and provides largely
unrestricted optical and physical access to the ion, of up to 96% of the total
4pi solid angle in one of the three traps tested. We also discuss potential
applications in quantum optics and field sensing. As a force sensor, we
estimate sensitivity to forces smaller than 1 yN Hz^(-1/2).Comment: 6 pages, 3 figures. Corrections of some typos, application section
expanded to account for reviewer comment
Photon-Atom Coupling with Parabolic Mirrors
Efficient coupling of light to single atomic systems has gained considerable
attention over the past decades. This development is driven by the continuous
growth of quantum technologies. The efficient coupling of light and matter is
an enabling technology for quantum information processing and quantum
communication. And indeed, in recent years much progress has been made in this
direction. But applications aside, the interaction of photons and atoms is a
fundamental physics problem. There are various possibilities for making this
interaction more efficient, among them the apparently 'natural' attempt of
mode-matching the light field to the free-space emission pattern of the atomic
system of interest. Here we will describe the necessary steps of implementing
this mode-matching with the ultimate aim of reaching unit coupling efficiency.
We describe the use of deep parabolic mirrors as the central optical element of
a free-space coupling scheme, covering the preparation of suitable modes of the
field incident onto these mirrors as well as the location of an atom at the
mirror's focus. Furthermore, we establish a robust method for determining the
efficiency of the photon-atom coupling.Comment: Book chapter in compilation "Engineering the Atom-Photon Interaction"
published by Springer in 2015, edited by A. Predojevic and M. W. Mitchell,
ISBN 9783319192307, http://www.springer.com/gp/book/9783319192307. Only
change to version1: now with hyperlinks to arXiv eprints of other book
chapters mentioned in this on
Comparing glass and plastic refractive microlenses fabricated with different technologies
- …
