84 research outputs found

    Generation of a wave packet tailored to efficient free space excitation of a single atom

    Full text link
    We demonstrate the generation of an optical dipole wave suitable for the process of efficiently coupling single quanta of light and matter in free space. We employ a parabolic mirror for the conversion of a transverse beam mode to a focused dipole wave and show the required spatial and temporal shaping of the mode incident onto the mirror. The results include a proof of principle correction of the parabolic mirror's aberrations. For the application of exciting an atom with a single photon pulse we demonstrate the creation of a suitable temporal pulse envelope. We infer coupling strengths of 89% and success probabilities of up to 87% for the application of exciting a single atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.

    A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies

    Get PDF
    We have measured differential cross sections for \pp elastic scattering with internal fiber targets in the recirculating beam of the proton synchrotron COSY. Measurements were made continuously during acceleration for projectile kinetic energies between 0.23 and 2.59 GeV in the angular range 30θc.m.9030 \leq \theta_{c.m.} \leq 90 deg. Details of the apparatus and the data analysis are given and the resulting excitation functions and angular distributions presented. The precision of each data point is typically better than 4%, and a relative normalization uncertainty of only 2.5% within an excitation function has been reached. The impact on phase shift analysis as well as upper bounds on possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure

    Measurement of Spin Correlation Parameters ANN_{NN}, ASS_{SS}, and A_SL{SL} at 2.1 GeV in Proton-Proton Elastic Scattering

    Full text link
    At the Cooler Synchrotron COSY/J\"ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for ANN_{NN}, ASS_{SS}, and A_SL{SL} for c.m. scattering angles between 30o^o and 90o^o. Our data on ASS_{SS} -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while ANN_{NN} and A_SL{SL} are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.Comment: 4 pages, 4 figure

    Simultaneous measurement of multimode squeezing through multimode phase-sensitive amplification

    Get PDF
    Multimode squeezed light is increasingly popular in photonic quantum technologies, including sensing, imaging, and computation. Existing methods for its characterization are technically complex, often reducing the level of squeezing and typically addressing only a single mode at a time. Here, for the first time, we employ optical parametric amplification to characterize multiple squeezing eigenmodes simultaneously. We retrieve the shapes and squeezing degrees of all modes at once through direct detection followed by modal decomposition. This method is tolerant to inefficient detection and does not require a local oscillator. For a spectrally and spatially multimode squeezed vacuum, we characterize the eight strongest spatial modes, obtaining squeezing and anti-squeezing values of up to −5.2 ± 0.2 dB and 8.6 ± 0.3 dB, respectively, despite 50% detection loss. This work, being the first exploration of an optical parametric amplifier’s multimode capability for squeezing detection, paves the way for real-time multimode squeezing detection

    The photonic wheel - demonstration of a state of light with purely transverse angular momentum

    Get PDF
    In classical mechanics, a system may possess angular momentum which can be either transverse (e.g. in a spinning wheel) or longitudinal(e.g. for a spiraling seed falling from a tree) with respect to the direction of motion. However, for light, a typical massless wave system,the situation is less versatile. Photons are well-known to exhibit intrinsic angular momentum which is longitudinal only: the spin angularmomentum defining the polarization and the orbital angular momentum associated with a spiraling phase front. Here we show that itis possible to generate a novel state of the light field that contains purely transverse angular momentum, the analogue of a spinningmechanical wheel. We realize this state by tight focusing of a polarization tailored light beam and measure it using an optical nano-probingtechnique. Such a novel state of the light field can find applications in optical tweezers and spanners where it allows for additionalrotational degree of freedom not achievable in single-beam configurations so far

    Design of a mode converter for efficient light-atom coupling in free space

    Full text link
    In this article, we describe how to develop a mode converter that transforms a plane electromagnetic wave into an inward moving dipole wave. The latter one is intended to bring a single atom or ion from its ground state to its excited state by absorption of a single photon wave packet with near-100% efficiency.Comment: RevTex4, 3 figures, revised version, accepted for publication at Appl. Phys.

    Ion traps with enhanced optical and physical access

    Full text link
    Small, controllable, highly accessible quantum systems can serve as probes at the single quantum level to study multiple physical effects, for example in quantum optics or for electric and magnetic field sensing. The applicability of trapped atomic ions as probes is highly dependent on the measurement situation at hand and thus calls for specialized traps. Previous approaches for ion traps with enhanced optical access included traps consisting of a single ring electrode or two opposing endcap electrodes. Other possibilities are planar trap geometries, which have been investigated for Penning traps and rf-trap arrays. By not having the electrodes lie in a common plane the optical access in the latter cases can be substantially increased. Here, we discuss the fabrication and experimental characterization of a novel radio-frequency (rf) ion trap geometry. It has a relatively simple structure and provides largely unrestricted optical and physical access to the ion, of up to 96% of the total 4pi solid angle in one of the three traps tested. We also discuss potential applications in quantum optics and field sensing. As a force sensor, we estimate sensitivity to forces smaller than 1 yN Hz^(-1/2).Comment: 6 pages, 3 figures. Corrections of some typos, application section expanded to account for reviewer comment

    Photon-Atom Coupling with Parabolic Mirrors

    Full text link
    Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling technology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently 'natural' attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident onto these mirrors as well as the location of an atom at the mirror's focus. Furthermore, we establish a robust method for determining the efficiency of the photon-atom coupling.Comment: Book chapter in compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchell, ISBN 9783319192307, http://www.springer.com/gp/book/9783319192307. Only change to version1: now with hyperlinks to arXiv eprints of other book chapters mentioned in this on
    corecore