37 research outputs found

    Magnetoresistance scaling in the layered cobaltate Ca3Co4O9

    Full text link
    We investigate the low temperature magnetic field dependences of both the resistivity and the magnetization in the misfit cobaltate Ca3Co4O9 from 60 K down to 2 K. The measured negative magnetoresistance reveals a scaling behavior with the magnetization which demonstrates a spin dependent diffusion mechanism. This scaling is also found to be consistent with a shadowed metalliclike conduction over the whole temperature range. By explaining the observed transport crossover, this result shed a new light on the nature of the elementary excitations relevant to the transport

    Strain induced pressure effect in pulsed laser deposited thin films of the strongly correlated oxide V2O3

    Full text link
    V2O3 thin films about 10 nm thick were grown on Al2O3 (0001) by pulsed laser deposition. The XRD analysis is in agreement with R-3c space group. Some of them exhibit the metal / insulator transition characteristic of V2O3 bulk material and others samples exhibit a metallic behavior. For the latter, the XPS analysis indicates an oxidation state of +III for vanadium. There is no metal / insulator transition around 150 K in this sample and a strongly correlated Fermi liquid rho = AT2 behavior of the resistivity at low temperature is observed, with a value of A of 1.2 10-4 ohm cm, 3 times larger than the bulk value at 25 kbar

    Strongly correlated properties of the thermoelectric cobalt oxide Ca3Co4O9

    Full text link
    We have performed both in-plane resistivity, Hall effect and specific heat measurements on the thermoelectric cobalt oxide Ca3_{3}Co4_{4}O9_{9}. Four distinct transport regimes are found as a function of temperature, corresponding to a low temperature insulating one up to TminT_{min}\approx 63 K, a strongly correlated Fermi liquid up to TT^*\approx 140 K, with ρ=ρ0+AT2\rho=\rho_0+AT^2 and A3.63A\approx 3.63 102μΩcm/K210^{-2} \mu \Omega cm/K^{2}, followed by an incoherent metal with kFl1k_Fl\leq 1 and a high temperature insulator above T^{**}\approx 510 K . Specific heat Sommerfeld coefficient γ=93\gamma = 93 mJ/(mol.K2^{2}) confirms a rather large value of the electronic effective mass and fulfils the Kadowaki-Woods ratio A/γ20.45A/\gamma^2 \approx 0.45 105^{-5} μΩcm.K2/(mJ2mol2)\mu \Omega cm.K^2/(mJ^2mol^{-2}). Resistivity measurements under pressure reveal a decrease of the Fermi liquid transport coefficient A with an increase of TT^* as a function of pressure while the product A(T)2/aA(T^*)^2/a remains constant and of order h/e2h/e^2. Both thermodynamic and transport properties suggest a strong renormalization of the quasiparticles coherence scale of order TT^* that seems to govern also thermopower.Comment: 5 pages, 6 figures, accepted for publication in Physical Review

    Dual electronic states in thermoelectric cobalt oxide

    Full text link
    We investigate the low temperature magnetic field dependence of the resistivity in the thermoelectric misfit cobalt oxide [Bi1.7Ca2O4]0.59CoO2 from 60 K down to 3 K. The scaling of the negative magnetoresistance demonstrates a spin dependent transport mechanism due to a strong Hund's coupling. The inferred microscopic description implies dual electronic states which explain the coexistence between localized and itinerant electrons both contributing to the thermopower. By shedding a new light on the electronic states which lead to a high thermopower, this result likely provides a new potential way to optimize the thermoelectric properties

    Substitution Effect by Deuterated Donors on Superconductivity in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Full text link
    We investigate the superconductivity in the deuterated BEDT-TTF molecular substitution system κ\kappa-[(h8-BEDT-TTF)1x_{1-x}(d8-BEDT-TTF)x_x]2_2Cu[N(CN)2_2]Br, where h8 and d8 denote fully hydrogenated and deuterated molecules, respectively. Systematic and wide range (xx = 0 -- 1) substitution can control chemical pressure finely near the Mott boundary, which results in the modification of the superconductivity. After cooling slowly, the increase of TcT_{\textrm{c}} observed up to xx \sim 0.1 is evidently caused by the chemical pressure effect. Neither reduction of TcT_{\textrm{c}} nor suppression of superconducting volume fraction is found below xx \sim 0.5. This demonstrates that the effect of disorder by substitution is negligible in the present system. With further increase of xx, both TcT_{\textrm{c}} and superconducting volume fraction start to decrease toward the values in xx = 1.Comment: J. Phys. Soc. Jp

    Electronic correlation in the infrared optical properties of the quasi two dimensional κ\kappa-type BEDT-TTF dimer system

    Get PDF
    The polarized optical reflectance spectra of the quasi two dimensional organic correlated electron system κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]YY, Y=Y = Br and Cl are measured in the infrared region. The former shows the superconductivity at TcT_{\rm c} \simeq 11.6 K and the latter does the antiferromagnetic insulator transition at TNT_{\rm N} \simeq 28 K. Both the specific molecular vibration mode ν3(ag)\nu_{3}(a_{g}) of the BEDT-TTF molecule and the optical conductivity hump in the mid-infrared region change correlatively at TT^{*} \simeq 38 K of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, although no indication of TT^{*} but the insulating behaviour below TinsT_{\rm ins} \simeq 50-60 K are found in κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl. The results suggest that the electron-molecular vibration coupling on the ν3(ag)\nu_{3}(a_{g}) mode becomes weak due to the enhancement of the itinerant nature of the carriers on the dimer of the BEDT-TTF molecules below TT^{*}, while it does strong below TinsT_{\rm ins} because of the localized carriers on the dimer. These changes are in agreement with the reduction and the enhancement of the mid-infrared conductivity hump below TT^{*} and TinsT_{\rm ins}, respectively, which originates from the transitions between the upper and lower Mott-Hubbard bands. The present observations demonstrate that two different metallic states of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br are regarded as {\it a correlated good metal} below TT^{*} including the superconducting state and {\it a half filling bad metal} above TT^{*}. In contrast the insulating state of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl below TinsT_{\rm ins} is the Mott insulator.Comment: 8 pages, 7 figure

    Quantum Mott Transition and Multi-Furcating Criticality

    Full text link
    Phenomenological theory of the Mott transition is presented. When the critical temperature of the Mott transition is much higher than the quantum degeneracy temperature, the transition is essentially described by the Ising universality class. Below the critical temperature, phase separation or first-order transition occurs. However, if the critical point is involved in the Fermi degeneracy region, a marginal quantum critical point appears at zero temperature. The originally single Mott critical point generates subsequent many unstable fixed points through various Fermi surface instabilities induced by the Mott criticality characterized by the diverging charge susceptibility or doublon susceptibility. This occurs in marginal quantum-critical region. Charge, magnetic and superconducting instabilitites compete severely under these critical charge fluctuations. The quantum Mott transition triggers multi-furcating criticality, which goes beyond the conventional concept of multicriticality in quantum phase transitions. Near the quantum Mott transition, the criticality generically drives growth of inhomogeneous structure in the momentum space with singular points of flat dispersion on the Fermi surface. The singular points determine the quantum dynamics of the Mott transition by the dynamical exponent z=4z=4. We argue that many of filling-control Mott transitions are classified to this category. Recent numerical results as well as experimental results on strongly correlated systems including transition metal oxides, organic materials and 3^3He layer adsorbed on a substrate are consistently analyzed especially in two-dimensional systems.Comment: 28 pages including 2 figure

    Exact diagonalization study of Mott transition in the Hubbard model on an anisotropic triangular lattice

    Full text link
    We study Mott transition in the two-dimensional Hubbard model on an anisotropic triangular lattice. We use the Lanczos exact diagonalization of finite-size clusters up to eighteen sites, and calculate Drude weight, charge gap, double occupancy and spin structure factor. We average these physical quantities over twisted boundary conditions in order to reduce finite-size effects. We find a signature of the Mott transition in the dependence of the Drude weight and/or charge gap on the system size. We also examine the possibility of antiferromagnetic order from the spin structure factor. Combining these information, we propose a ground-state phase diagram which has a nonmagnetic insulating phase between a metallic phase and an insulating phase with antiferromagnetic order. Finally, we compare our results with those reported in the previous theoretical studies, and discuss the possibility of an unconventional insulating state.Comment: 10 pages, 11 figure

    Real space imaging of the metal - insulator phase separation in the band width controlled organic Mott system κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br

    Full text link
    Systematic investigation of the electronic phase separation on macroscopic scale is reported in the organic Mott system κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br. Real space imaging of the phase separation is obtained by means of scanning micro-region infrared spectroscopy using the synchrotron radiation. The phase separation appears near the Mott boundary and changes its metal-insulator fraction with the substitution ratio xx in κ\kappa-[(hh-BEDT-TTF)1x_{1-x}(dd-BEDT-TTF)x_{x}]2_{2}Cu[N(CN)2_{2}]Br, of which band width is controlled by the substitution ratio xx between the hydrogenated BEDT-TTF molecule (hh-BEDT-TTF) and the deuterated one (dd-BEDT-TTF). The phase separation phenomenon observed in this class of organics is considered on the basis of the strongly correlated electronic phase diagram with the first order Mott transition.Comment: 10 pages, 8 figure

    Transport criticality in triangular lattice Hubbard model

    Full text link
    We study electric transport near the Mott metal-insulator transition. Optical conductivity of the half-filled Hubbard model on a triangular lattice is calculated based on a cellular dynamical mean field theory including vertex corrections inside the cluster. By investigating the spectrum at low frequencies, we find that a Drude peak on the metallic side smoothly connects to an "ingap" peak on the insulating side. The optical weight of these peaks exhibits a critical behavior with power-law near the Mott critical end point, DDUU1/δ|D-D^*|\propto|U-U^*|^{1/\delta}. We find that the critical exponent 1/δ1/\delta differs from the exponents in the thermodynamics.Comment: 4 pages, 4 figure
    corecore